拆分-应用-合并,动态分组

Mark P. J. van der Loo
{"title":"拆分-应用-合并,动态分组","authors":"Mark P. J. van der Loo","doi":"arxiv-2406.09887","DOIUrl":null,"url":null,"abstract":"Partitioning a data set by one or more of its attributes and computing an\naggregate for each part is one of the most common operations in data analyses.\nThere are use cases where the partitioning is determined dynamically by\ncollapsing smaller subsets into larger ones, to ensure sufficient support for\nthe computed aggregate. These use cases are not supported by software\nimplementing split-apply-combine types of operations. This paper presents the\n\\texttt{R} package \\texttt{accumulate} that offers convenient interfaces for\ndefining grouped aggregation where the grouping itself is dynamically\ndetermined, based on user-defined conditions on subsets, and a user-defined\nsubset collapsing scheme. The formal underlying algorithm is described and\nanalyzed as well.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Split-Apply-Combine with Dynamic Grouping\",\"authors\":\"Mark P. J. van der Loo\",\"doi\":\"arxiv-2406.09887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partitioning a data set by one or more of its attributes and computing an\\naggregate for each part is one of the most common operations in data analyses.\\nThere are use cases where the partitioning is determined dynamically by\\ncollapsing smaller subsets into larger ones, to ensure sufficient support for\\nthe computed aggregate. These use cases are not supported by software\\nimplementing split-apply-combine types of operations. This paper presents the\\n\\\\texttt{R} package \\\\texttt{accumulate} that offers convenient interfaces for\\ndefining grouped aggregation where the grouping itself is dynamically\\ndetermined, based on user-defined conditions on subsets, and a user-defined\\nsubset collapsing scheme. The formal underlying algorithm is described and\\nanalyzed as well.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.09887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据数据集的一个或多个属性对数据集进行分区,并计算每个部分的合计数,是数据分析中最常见的操作之一。在一些使用案例中,分区是通过将较小的子集折叠成较大的子集来动态确定的,以确保为计算的合计数提供足够的支持。实现拆分-应用-合并类型操作的软件不支持这些用例。本文介绍了 \texttt{R}包 \texttt{accumulate},它为定义分组聚合提供了方便的接口,分组本身是根据用户定义的子集条件和用户定义的子集折叠方案动态决定的。此外,还对正式的基础算法进行了描述和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Split-Apply-Combine with Dynamic Grouping
Partitioning a data set by one or more of its attributes and computing an aggregate for each part is one of the most common operations in data analyses. There are use cases where the partitioning is determined dynamically by collapsing smaller subsets into larger ones, to ensure sufficient support for the computed aggregate. These use cases are not supported by software implementing split-apply-combine types of operations. This paper presents the \texttt{R} package \texttt{accumulate} that offers convenient interfaces for defining grouped aggregation where the grouping itself is dynamically determined, based on user-defined conditions on subsets, and a user-defined subset collapsing scheme. The formal underlying algorithm is described and analyzed as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1