用于粒子物理学射流重构的变分伪边际方法

Hanming Yang, Antonio Khalil Moretti, Sebastian Macaluso, Philippe Chlenski, Christian A. Naesseth, Itsik Pe'er
{"title":"用于粒子物理学射流重构的变分伪边际方法","authors":"Hanming Yang, Antonio Khalil Moretti, Sebastian Macaluso, Philippe Chlenski, Christian A. Naesseth, Itsik Pe'er","doi":"arxiv-2406.03242","DOIUrl":null,"url":null,"abstract":"Reconstructing jets, which provide vital insights into the properties and\nhistories of subatomic particles produced in high-energy collisions, is a main\nproblem in data analyses in collider physics. This intricate task deals with\nestimating the latent structure of a jet (binary tree) and involves parameters\nsuch as particle energy, momentum, and types. While Bayesian methods offer a\nnatural approach for handling uncertainty and leveraging prior knowledge, they\nface significant challenges due to the super-exponential growth of potential\njet topologies as the number of observed particles increases. To address this,\nwe introduce a Combinatorial Sequential Monte Carlo approach for inferring jet\nlatent structures. As a second contribution, we leverage the resulting\nestimator to develop a variational inference algorithm for parameter learning.\nBuilding on this, we introduce a variational family using a pseudo-marginal\nframework for a fully Bayesian treatment of all variables, unifying the\ngenerative model with the inference process. We illustrate our method's\neffectiveness through experiments using data generated with a collider physics\ngenerative model, highlighting superior speed and accuracy across a range of\ntasks.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics\",\"authors\":\"Hanming Yang, Antonio Khalil Moretti, Sebastian Macaluso, Philippe Chlenski, Christian A. Naesseth, Itsik Pe'er\",\"doi\":\"arxiv-2406.03242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstructing jets, which provide vital insights into the properties and\\nhistories of subatomic particles produced in high-energy collisions, is a main\\nproblem in data analyses in collider physics. This intricate task deals with\\nestimating the latent structure of a jet (binary tree) and involves parameters\\nsuch as particle energy, momentum, and types. While Bayesian methods offer a\\nnatural approach for handling uncertainty and leveraging prior knowledge, they\\nface significant challenges due to the super-exponential growth of potential\\njet topologies as the number of observed particles increases. To address this,\\nwe introduce a Combinatorial Sequential Monte Carlo approach for inferring jet\\nlatent structures. As a second contribution, we leverage the resulting\\nestimator to develop a variational inference algorithm for parameter learning.\\nBuilding on this, we introduce a variational family using a pseudo-marginal\\nframework for a fully Bayesian treatment of all variables, unifying the\\ngenerative model with the inference process. We illustrate our method's\\neffectiveness through experiments using data generated with a collider physics\\ngenerative model, highlighting superior speed and accuracy across a range of\\ntasks.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.03242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

喷流是对撞机物理数据分析中的一个主要问题,它为了解高能对撞中产生的亚原子粒子的性质和历史提供了重要线索。这项复杂的任务涉及估计喷流(二叉树)的潜在结构,并涉及粒子能量、动量和类型等参数。虽然贝叶斯方法为处理不确定性和利用先验知识提供了一种自然的方法,但由于潜在射流拓扑结构随着观测粒子数量的增加而呈超指数增长,贝叶斯方法面临着巨大的挑战。为了解决这个问题,我们引入了一种组合序列蒙特卡洛方法来推断喷气孔结构。在此基础上,我们引入了一个使用伪边际框架的变分系列,对所有变量进行完全贝叶斯处理,将生成模型与推理过程统一起来。我们通过使用对撞机物理生成模型生成的数据进行实验来说明我们的方法的有效性,在一系列任务中凸显了卓越的速度和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
Reconstructing jets, which provide vital insights into the properties and histories of subatomic particles produced in high-energy collisions, is a main problem in data analyses in collider physics. This intricate task deals with estimating the latent structure of a jet (binary tree) and involves parameters such as particle energy, momentum, and types. While Bayesian methods offer a natural approach for handling uncertainty and leveraging prior knowledge, they face significant challenges due to the super-exponential growth of potential jet topologies as the number of observed particles increases. To address this, we introduce a Combinatorial Sequential Monte Carlo approach for inferring jet latent structures. As a second contribution, we leverage the resulting estimator to develop a variational inference algorithm for parameter learning. Building on this, we introduce a variational family using a pseudo-marginal framework for a fully Bayesian treatment of all variables, unifying the generative model with the inference process. We illustrate our method's effectiveness through experiments using data generated with a collider physics generative model, highlighting superior speed and accuracy across a range of tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1