通过随机森林进行近似贝叶斯计算顺序蒙特卡罗

Khanh N. Dinh, Zijin Xiang, Zhihan Liu, Simon Tavaré
{"title":"通过随机森林进行近似贝叶斯计算顺序蒙特卡罗","authors":"Khanh N. Dinh, Zijin Xiang, Zhihan Liu, Simon Tavaré","doi":"arxiv-2406.15865","DOIUrl":null,"url":null,"abstract":"Approximate Bayesian Computation (ABC) is a popular inference method when\nlikelihoods are hard to come by. Practical bottlenecks of ABC applications\ninclude selecting statistics that summarize the data without losing too much\ninformation or introducing uncertainty, and choosing distance functions and\ntolerance thresholds that balance accuracy and computational efficiency. Recent\nstudies have shown that ABC methods using random forest (RF) methodology\nperform well while circumventing many of ABC's drawbacks. However, RF\nconstruction is computationally expensive for large numbers of trees and model\nsimulations, and there can be high uncertainty in the posterior if the prior\ndistribution is uninformative. Here we adapt distributional random forests to\nthe ABC setting, and introduce Approximate Bayesian Computation sequential\nMonte Carlo with random forests (ABC-SMC-(D)RF). This updates the prior\ndistribution iteratively to focus on the most likely regions in the parameter\nspace. We show that ABC-SMC-(D)RF can accurately infer posterior distributions\nfor a wide range of deterministic and stochastic models in different scientific\nareas.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Bayesian Computation sequential Monte Carlo via random forests\",\"authors\":\"Khanh N. Dinh, Zijin Xiang, Zhihan Liu, Simon Tavaré\",\"doi\":\"arxiv-2406.15865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate Bayesian Computation (ABC) is a popular inference method when\\nlikelihoods are hard to come by. Practical bottlenecks of ABC applications\\ninclude selecting statistics that summarize the data without losing too much\\ninformation or introducing uncertainty, and choosing distance functions and\\ntolerance thresholds that balance accuracy and computational efficiency. Recent\\nstudies have shown that ABC methods using random forest (RF) methodology\\nperform well while circumventing many of ABC's drawbacks. However, RF\\nconstruction is computationally expensive for large numbers of trees and model\\nsimulations, and there can be high uncertainty in the posterior if the prior\\ndistribution is uninformative. Here we adapt distributional random forests to\\nthe ABC setting, and introduce Approximate Bayesian Computation sequential\\nMonte Carlo with random forests (ABC-SMC-(D)RF). This updates the prior\\ndistribution iteratively to focus on the most likely regions in the parameter\\nspace. We show that ABC-SMC-(D)RF can accurately infer posterior distributions\\nfor a wide range of deterministic and stochastic models in different scientific\\nareas.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.15865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近似贝叶斯计算(Approximate Bayesian Computation,ABC)是一种常用的推理方法,适用于难以获得似然值的情况。近似贝叶斯计算应用的实际瓶颈包括选择既能概括数据又不会丢失过多信息或引入不确定性的统计量,以及选择兼顾准确性和计算效率的距离函数和容限阈值。最近的研究表明,使用随机森林(RF)方法的 ABC 方法表现良好,同时规避了 ABC 的许多缺点。然而,对于大量的树和模型模拟,RF 构建的计算成本很高,而且如果前值分布信息不全,后值的不确定性也会很高。在此,我们将分布随机森林调整为 ABC 设置,并引入了近似贝叶斯计算序列蒙特卡罗随机森林(ABC-SMC-(D)RF)。这种方法会迭代更新优先分布,以关注参数空间中最有可能的区域。我们证明,ABC-SMC-(D)RF 可以准确推断出不同科学领域中各种确定性和随机模型的后验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate Bayesian Computation sequential Monte Carlo via random forests
Approximate Bayesian Computation (ABC) is a popular inference method when likelihoods are hard to come by. Practical bottlenecks of ABC applications include selecting statistics that summarize the data without losing too much information or introducing uncertainty, and choosing distance functions and tolerance thresholds that balance accuracy and computational efficiency. Recent studies have shown that ABC methods using random forest (RF) methodology perform well while circumventing many of ABC's drawbacks. However, RF construction is computationally expensive for large numbers of trees and model simulations, and there can be high uncertainty in the posterior if the prior distribution is uninformative. Here we adapt distributional random forests to the ABC setting, and introduce Approximate Bayesian Computation sequential Monte Carlo with random forests (ABC-SMC-(D)RF). This updates the prior distribution iteratively to focus on the most likely regions in the parameter space. We show that ABC-SMC-(D)RF can accurately infer posterior distributions for a wide range of deterministic and stochastic models in different scientific areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1