{"title":"优化两台水轮机组共用超长扬程隧洞的水电系统暂态过程的调速器参数","authors":"Wencheng Guo, Li Wang, Fangle Qu","doi":"10.1002/ese3.1832","DOIUrl":null,"url":null,"abstract":"<p>The governor parameters affect the stability and regulation quality of hydropower system with two turbine units sharing a super long headrace tunnel (SLHT). To improve the transient process of hydropower system, this study investigates the optimization of governor parameters. First, the model of hydropower system with two turbine units sharing an SLHT is established. Second, the optimization scheme of governor parameters for transient process of hydropower system is designed by genetic algorithm. The mathematical formulation of genetic algorithm is illuminated. The implementation procedure of genetic algorithm is illustrated. Then, the optimization results of governor parameters by genetic algorithm are analyzed by illustrating the regulation quality of hydropower system under two operating conditions. Finally, the effect of asymmetrical factors on optimal governor parameters is revealed. The asymmetrical layout of bifurcated penstocks, asymmetrical layout of turbine units, and asymmetrical load disturbances are considered. The results indicate that the objective function of hydropower system is composed of the dynamic indexes for frequency oscillations of two turbine units and water level oscillation in surge tank. The fitness function evolves in the direction that makes the regulation quality of hydropower system become better. Under the symmetrical or asymmetrical bifurcated penstocks, turbine units, and load disturbances, the optimal parameters of governors are asymmetrical. The regulation quality of hydropower system under the governor parameters of genetic algorithm is obviously better than that under the governor parameters of Stein formula. The optimal governor parameters are directly affected by the asymmetrical factors of hydropower system. With the increase of the flow inertia of one bifurcated penstock, the optimal parameters of the other governor become greater.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1832","citationCount":"0","resultStr":"{\"title\":\"Optimization of governor parameters for transient process of hydropower system with two turbine units sharing a super long headrace tunnel\",\"authors\":\"Wencheng Guo, Li Wang, Fangle Qu\",\"doi\":\"10.1002/ese3.1832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The governor parameters affect the stability and regulation quality of hydropower system with two turbine units sharing a super long headrace tunnel (SLHT). To improve the transient process of hydropower system, this study investigates the optimization of governor parameters. First, the model of hydropower system with two turbine units sharing an SLHT is established. Second, the optimization scheme of governor parameters for transient process of hydropower system is designed by genetic algorithm. The mathematical formulation of genetic algorithm is illuminated. The implementation procedure of genetic algorithm is illustrated. Then, the optimization results of governor parameters by genetic algorithm are analyzed by illustrating the regulation quality of hydropower system under two operating conditions. Finally, the effect of asymmetrical factors on optimal governor parameters is revealed. The asymmetrical layout of bifurcated penstocks, asymmetrical layout of turbine units, and asymmetrical load disturbances are considered. The results indicate that the objective function of hydropower system is composed of the dynamic indexes for frequency oscillations of two turbine units and water level oscillation in surge tank. The fitness function evolves in the direction that makes the regulation quality of hydropower system become better. Under the symmetrical or asymmetrical bifurcated penstocks, turbine units, and load disturbances, the optimal parameters of governors are asymmetrical. The regulation quality of hydropower system under the governor parameters of genetic algorithm is obviously better than that under the governor parameters of Stein formula. The optimal governor parameters are directly affected by the asymmetrical factors of hydropower system. With the increase of the flow inertia of one bifurcated penstock, the optimal parameters of the other governor become greater.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1832\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1832\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1832","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimization of governor parameters for transient process of hydropower system with two turbine units sharing a super long headrace tunnel
The governor parameters affect the stability and regulation quality of hydropower system with two turbine units sharing a super long headrace tunnel (SLHT). To improve the transient process of hydropower system, this study investigates the optimization of governor parameters. First, the model of hydropower system with two turbine units sharing an SLHT is established. Second, the optimization scheme of governor parameters for transient process of hydropower system is designed by genetic algorithm. The mathematical formulation of genetic algorithm is illuminated. The implementation procedure of genetic algorithm is illustrated. Then, the optimization results of governor parameters by genetic algorithm are analyzed by illustrating the regulation quality of hydropower system under two operating conditions. Finally, the effect of asymmetrical factors on optimal governor parameters is revealed. The asymmetrical layout of bifurcated penstocks, asymmetrical layout of turbine units, and asymmetrical load disturbances are considered. The results indicate that the objective function of hydropower system is composed of the dynamic indexes for frequency oscillations of two turbine units and water level oscillation in surge tank. The fitness function evolves in the direction that makes the regulation quality of hydropower system become better. Under the symmetrical or asymmetrical bifurcated penstocks, turbine units, and load disturbances, the optimal parameters of governors are asymmetrical. The regulation quality of hydropower system under the governor parameters of genetic algorithm is obviously better than that under the governor parameters of Stein formula. The optimal governor parameters are directly affected by the asymmetrical factors of hydropower system. With the increase of the flow inertia of one bifurcated penstock, the optimal parameters of the other governor become greater.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.