使用新型高效敏化剂吲哚并[3, 2-b]咔唑复合物的染料敏化太阳能电池光伏参数的 DFT 模拟

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Energy Science & Engineering Pub Date : 2024-07-01 DOI:10.1002/ese3.1834
Muhammad Usman Khan, Abida Anwar, Abrar Ul Hassan, Saad M. Alshehri, Amir Sohail
{"title":"使用新型高效敏化剂吲哚并[3, 2-b]咔唑复合物的染料敏化太阳能电池光伏参数的 DFT 模拟","authors":"Muhammad Usman Khan,&nbsp;Abida Anwar,&nbsp;Abrar Ul Hassan,&nbsp;Saad M. Alshehri,&nbsp;Amir Sohail","doi":"10.1002/ese3.1834","DOIUrl":null,"url":null,"abstract":"<p>Developing economical and high-performing sensitizers is crucial in advancing dye-sensitized solar cells (DSSCs) and optoelectronics. This research paper explores the potential of novel red light-absorbing organic dyes based on Indolo[3,2-b]carbazole (ICZ) as the donor applied in co-sensitizer-free DSSCs for breakthroughs in photovoltaic (PV) applications. DFT and TD-DFT based computational methods were employed to calculate the conduction band levels, electron injection capabilities, and power conversion efficiency (PCE) of metal-free organic dyes (ICZ1–ICZ9) having D-A-π-A architecture. Comprehensive analyses included NBO, DOS, FMO, ICT, MEP, binding energy, and TDM analysis. Quantum chemical calculations of the structural, photochemical, and electrochemical properties, as well as the key parameters, reveals that all the designed dyes could be an excellent candidate for high-efficiency DSSCs due the small energy gap (2.130–1.947 eV), longer wavelength absorption (759.47–520.63 nm), longer lifetimes (15.65–6.67 ns), a lower Δ<i>G</i><sub>reg</sub> (0.29–0.14 eV), a significant dipole moment changes (31.489–16.195D), LHE (0.95-0.46), the large <i>q</i><sup>CT</sup> (0.962–0.689), small <i>D</i><sup>CT</sup> (7.657, 4.897 Å), and <i>V</i><sub>OC</sub> (1.13–0.86 eV). This quantum simulation showed that, when compared to reference D8, the photovoltaic dyes ICZ8, ICZ2, and ICZ7 are recognized as being eye-catching. Furthermore, dye@(TiO<sub>2</sub>)<sub>9</sub> cluster model results demonstrate promising prospects for enhancing the photovoltaic (PV) performance of ICZ1–ICZ9 dyes by electron injection and conduction band (CB) engineering. This study will help the experimentalists for developing ICZ-based PVs as more efficient and sustainable energy solutions.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1834","citationCount":"0","resultStr":"{\"title\":\"DFT simulations of photovoltaic parameters of dye-sensitized solar cells with new efficient sensitizer of indolo[3, 2-b]carbazole complexes\",\"authors\":\"Muhammad Usman Khan,&nbsp;Abida Anwar,&nbsp;Abrar Ul Hassan,&nbsp;Saad M. Alshehri,&nbsp;Amir Sohail\",\"doi\":\"10.1002/ese3.1834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing economical and high-performing sensitizers is crucial in advancing dye-sensitized solar cells (DSSCs) and optoelectronics. This research paper explores the potential of novel red light-absorbing organic dyes based on Indolo[3,2-b]carbazole (ICZ) as the donor applied in co-sensitizer-free DSSCs for breakthroughs in photovoltaic (PV) applications. DFT and TD-DFT based computational methods were employed to calculate the conduction band levels, electron injection capabilities, and power conversion efficiency (PCE) of metal-free organic dyes (ICZ1–ICZ9) having D-A-π-A architecture. Comprehensive analyses included NBO, DOS, FMO, ICT, MEP, binding energy, and TDM analysis. Quantum chemical calculations of the structural, photochemical, and electrochemical properties, as well as the key parameters, reveals that all the designed dyes could be an excellent candidate for high-efficiency DSSCs due the small energy gap (2.130–1.947 eV), longer wavelength absorption (759.47–520.63 nm), longer lifetimes (15.65–6.67 ns), a lower Δ<i>G</i><sub>reg</sub> (0.29–0.14 eV), a significant dipole moment changes (31.489–16.195D), LHE (0.95-0.46), the large <i>q</i><sup>CT</sup> (0.962–0.689), small <i>D</i><sup>CT</sup> (7.657, 4.897 Å), and <i>V</i><sub>OC</sub> (1.13–0.86 eV). This quantum simulation showed that, when compared to reference D8, the photovoltaic dyes ICZ8, ICZ2, and ICZ7 are recognized as being eye-catching. Furthermore, dye@(TiO<sub>2</sub>)<sub>9</sub> cluster model results demonstrate promising prospects for enhancing the photovoltaic (PV) performance of ICZ1–ICZ9 dyes by electron injection and conduction band (CB) engineering. This study will help the experimentalists for developing ICZ-based PVs as more efficient and sustainable energy solutions.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1834\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1834\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1834","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

开发经济、高性能的敏化剂对于推动染料敏化太阳能电池(DSSC)和光电子学的发展至关重要。本研究论文探讨了基于吲哚并[3,2-b]咔唑(ICZ)作为给体的新型红光吸收有机染料在无助敏剂 DSSC 中的应用潜力,以期在光伏(PV)应用领域取得突破。研究人员采用基于 DFT 和 TD-DFT 的计算方法计算了具有 D-A-π-A 结构的无金属有机染料(ICZ1-ICZ9)的传导带电平、电子注入能力和功率转换效率 (PCE)。综合分析包括 NBO、DOS、FMO、ICT、MEP、结合能和 TDM 分析。对结构、光化学和电化学特性以及关键参数进行的量子化学计算表明,由于能隙小(2.130-1.947 eV)、较长的吸收波长(759.47-520.63 nm)、较长的寿命(15.65-6.67 ns)、较低的ΔGreg(0.29-0.14 eV)、偶极矩变化明显(31.489-16.195D)、LHE(0.95-0.46)、qCT 大(0.962-0.689)、DCT 小(7.657、4.897 Å)和 VOC(1.13-0.86 eV)。该量子模拟显示,与参考 D8 相比,光电染料 ICZ8、ICZ2 和 ICZ7 被公认为引人注目。此外,dye@(TiO2)9 团簇模型结果表明,通过电子注入和导带(CB)工程提高 ICZ1-ICZ9 染料的光伏(PV)性能前景广阔。这项研究将有助于实验人员开发基于 ICZ 的光伏技术,使其成为更高效、更可持续的能源解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DFT simulations of photovoltaic parameters of dye-sensitized solar cells with new efficient sensitizer of indolo[3, 2-b]carbazole complexes

Developing economical and high-performing sensitizers is crucial in advancing dye-sensitized solar cells (DSSCs) and optoelectronics. This research paper explores the potential of novel red light-absorbing organic dyes based on Indolo[3,2-b]carbazole (ICZ) as the donor applied in co-sensitizer-free DSSCs for breakthroughs in photovoltaic (PV) applications. DFT and TD-DFT based computational methods were employed to calculate the conduction band levels, electron injection capabilities, and power conversion efficiency (PCE) of metal-free organic dyes (ICZ1–ICZ9) having D-A-π-A architecture. Comprehensive analyses included NBO, DOS, FMO, ICT, MEP, binding energy, and TDM analysis. Quantum chemical calculations of the structural, photochemical, and electrochemical properties, as well as the key parameters, reveals that all the designed dyes could be an excellent candidate for high-efficiency DSSCs due the small energy gap (2.130–1.947 eV), longer wavelength absorption (759.47–520.63 nm), longer lifetimes (15.65–6.67 ns), a lower ΔGreg (0.29–0.14 eV), a significant dipole moment changes (31.489–16.195D), LHE (0.95-0.46), the large qCT (0.962–0.689), small DCT (7.657, 4.897 Å), and VOC (1.13–0.86 eV). This quantum simulation showed that, when compared to reference D8, the photovoltaic dyes ICZ8, ICZ2, and ICZ7 are recognized as being eye-catching. Furthermore, dye@(TiO2)9 cluster model results demonstrate promising prospects for enhancing the photovoltaic (PV) performance of ICZ1–ICZ9 dyes by electron injection and conduction band (CB) engineering. This study will help the experimentalists for developing ICZ-based PVs as more efficient and sustainable energy solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
期刊最新文献
Issue Information Similar simulation test of the mechanical properties of layered composite rock mass A novel approach to classify lithology of reservoir formations using GrowNet and Deep-Insight with physic-based feature augmentation Combined genetic algorithm and response surface methodology-based bi-optimization of a vertical-axis wind turbine numerically simulated using CFD Experimental study on the utilization of Fly ash solid waste in tunnel shotcrete materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1