{"title":"将 Fe3O4 纳米颗粒封装在从乳化沥青中提取的石墨化和面内多孔碳纳米笼中,用于高性能锂离子电池负极","authors":"Dandan Hu, Linxiu Sui, Jinjin Shi, Dongfeng Li, Yuxuan Zhang, Yimeng Li, Bingbing Hu, Xiaoya Yuan","doi":"10.1007/s11706-024-0687-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, C@Fe<sub>3</sub>O<sub>4</sub> composites were prepared through a typical template method with emulsified asphalt as carbon source, ammonium ferric citrate as transition metal oxide precursor, and NaCl as template. As an anode for lithium-ion batteries, the optimized C@Fe<sub>3</sub>O<sub>4</sub>-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g<sup>−1</sup> after 100 cycles at 0.1 A·g<sup>−1</sup> and a high capacity of 531.1 mA·h·g<sup>−1</sup> after 300 cycles at 1 A·g<sup>−1</sup>, much better than those of bulk carbon/Fe<sub>3</sub>O<sub>4</sub> prepared without NaCl. Such remarkable cycling performance mainly benefits from its well-designed structure: Fe<sub>3</sub>O<sub>4</sub> nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt. The carbon nanocages not only improve the conductivity of Fe<sub>3</sub>O<sub>4</sub>, but also suppress the volume expansion of Fe<sub>3</sub>O<sub>4</sub> effectively during the charge–discharge cycle, thus delivering a robust electrochemical stability. This work realizes the high value-added utilization of low-cost petroleum asphalt, and can be extended to application of other transition-metal oxides-based anodes.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe3O4 nanoparticles encapsulated in graphitized and in-plane porous carbon nanocages derived from emulsified asphalt for a high-performance lithium-ion battery anode\",\"authors\":\"Dandan Hu, Linxiu Sui, Jinjin Shi, Dongfeng Li, Yuxuan Zhang, Yimeng Li, Bingbing Hu, Xiaoya Yuan\",\"doi\":\"10.1007/s11706-024-0687-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, C@Fe<sub>3</sub>O<sub>4</sub> composites were prepared through a typical template method with emulsified asphalt as carbon source, ammonium ferric citrate as transition metal oxide precursor, and NaCl as template. As an anode for lithium-ion batteries, the optimized C@Fe<sub>3</sub>O<sub>4</sub>-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g<sup>−1</sup> after 100 cycles at 0.1 A·g<sup>−1</sup> and a high capacity of 531.1 mA·h·g<sup>−1</sup> after 300 cycles at 1 A·g<sup>−1</sup>, much better than those of bulk carbon/Fe<sub>3</sub>O<sub>4</sub> prepared without NaCl. Such remarkable cycling performance mainly benefits from its well-designed structure: Fe<sub>3</sub>O<sub>4</sub> nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt. The carbon nanocages not only improve the conductivity of Fe<sub>3</sub>O<sub>4</sub>, but also suppress the volume expansion of Fe<sub>3</sub>O<sub>4</sub> effectively during the charge–discharge cycle, thus delivering a robust electrochemical stability. This work realizes the high value-added utilization of low-cost petroleum asphalt, and can be extended to application of other transition-metal oxides-based anodes.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0687-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0687-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fe3O4 nanoparticles encapsulated in graphitized and in-plane porous carbon nanocages derived from emulsified asphalt for a high-performance lithium-ion battery anode
In this work, C@Fe3O4 composites were prepared through a typical template method with emulsified asphalt as carbon source, ammonium ferric citrate as transition metal oxide precursor, and NaCl as template. As an anode for lithium-ion batteries, the optimized C@Fe3O4-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g−1 after 100 cycles at 0.1 A·g−1 and a high capacity of 531.1 mA·h·g−1 after 300 cycles at 1 A·g−1, much better than those of bulk carbon/Fe3O4 prepared without NaCl. Such remarkable cycling performance mainly benefits from its well-designed structure: Fe3O4 nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt. The carbon nanocages not only improve the conductivity of Fe3O4, but also suppress the volume expansion of Fe3O4 effectively during the charge–discharge cycle, thus delivering a robust electrochemical stability. This work realizes the high value-added utilization of low-cost petroleum asphalt, and can be extended to application of other transition-metal oxides-based anodes.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.