{"title":"利用 PIPS 探测器提高能量分辨率的紧凑型β-γ 射线氙探测系统","authors":"Sepideh Alsadat Azimi, Hossein Afarideh, Jong-Seo Chai","doi":"10.1007/s00024-024-03487-z","DOIUrl":null,"url":null,"abstract":"<p>The monitoring of four radioxenon isotopes stands out as a key technology employed in detecting underground nuclear tests. In support of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), we develop and calibrate a novel radioxenon detection system based on beta-gamma coincidence, utilizing NaI(Tl) and silicon detectors for gamma and beta radiation detection. To assess its performance, the prototype detection system undergoes rigorous testing with <sup>222</sup>Rn and <sup>131m</sup>Xe sources. A <sup>166m</sup>Ho source is employed for energy calibration and performance evaluation of the silicon detector. In this study, we aim to investigate the utility of these materials and methods for a radioxenon detection system to achieve higher energy resolution while minimizing memory effects compared to conventional systems that employed plastic scintillator detectors. Our results demonstrate a significantly improved energy resolution of 7.8% (factor of ~ 3 × compared to plastic detectors) at the 129 keV conversion electron peak of <sup>131m</sup>Xe. The improved system is a foundation for the development of operational systems with optimized geometry for the discrimination of radioxenon isotopes.</p>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"146 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Beta-Gamma Radioxenon Detection System with Improved Energy Resolution Using PIPS Detector\",\"authors\":\"Sepideh Alsadat Azimi, Hossein Afarideh, Jong-Seo Chai\",\"doi\":\"10.1007/s00024-024-03487-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The monitoring of four radioxenon isotopes stands out as a key technology employed in detecting underground nuclear tests. In support of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), we develop and calibrate a novel radioxenon detection system based on beta-gamma coincidence, utilizing NaI(Tl) and silicon detectors for gamma and beta radiation detection. To assess its performance, the prototype detection system undergoes rigorous testing with <sup>222</sup>Rn and <sup>131m</sup>Xe sources. A <sup>166m</sup>Ho source is employed for energy calibration and performance evaluation of the silicon detector. In this study, we aim to investigate the utility of these materials and methods for a radioxenon detection system to achieve higher energy resolution while minimizing memory effects compared to conventional systems that employed plastic scintillator detectors. Our results demonstrate a significantly improved energy resolution of 7.8% (factor of ~ 3 × compared to plastic detectors) at the 129 keV conversion electron peak of <sup>131m</sup>Xe. The improved system is a foundation for the development of operational systems with optimized geometry for the discrimination of radioxenon isotopes.</p>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00024-024-03487-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00024-024-03487-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Compact Beta-Gamma Radioxenon Detection System with Improved Energy Resolution Using PIPS Detector
The monitoring of four radioxenon isotopes stands out as a key technology employed in detecting underground nuclear tests. In support of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), we develop and calibrate a novel radioxenon detection system based on beta-gamma coincidence, utilizing NaI(Tl) and silicon detectors for gamma and beta radiation detection. To assess its performance, the prototype detection system undergoes rigorous testing with 222Rn and 131mXe sources. A 166mHo source is employed for energy calibration and performance evaluation of the silicon detector. In this study, we aim to investigate the utility of these materials and methods for a radioxenon detection system to achieve higher energy resolution while minimizing memory effects compared to conventional systems that employed plastic scintillator detectors. Our results demonstrate a significantly improved energy resolution of 7.8% (factor of ~ 3 × compared to plastic detectors) at the 129 keV conversion electron peak of 131mXe. The improved system is a foundation for the development of operational systems with optimized geometry for the discrimination of radioxenon isotopes.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.