通过即时上下文切换和延长功率门控时间实现低功耗神经网络处理的 3-D 存储器系统

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-24 DOI:10.1109/JEDS.2024.3418036
Kouhei Toyotaka;Yuto Yakubo;Kazuma Furutani;Haruki Katagiri;Masashi Fujita;Yoshinori Ando;Toru Nakura;Shunpei Yamazaki
{"title":"通过即时上下文切换和延长功率门控时间实现低功耗神经网络处理的 3-D 存储器系统","authors":"Kouhei Toyotaka;Yuto Yakubo;Kazuma Furutani;Haruki Katagiri;Masashi Fujita;Yoshinori Ando;Toru Nakura;Shunpei Yamazaki","doi":"10.1109/JEDS.2024.3418036","DOIUrl":null,"url":null,"abstract":"Using a 3-D monolithic stacking memory technology of crystalline oxide semiconductor (OS) transistors, we fabricated a test chip having AI accelerator (ACC) memory for weight data of a neural network (NN), backup memory of flip-flops (FF), and CPU memory storing instructions and data. These memories are composed of two-layer OS transistors on Si CMOS, where memories in each layer correspond to a bank. In this structure, bank switching of the ACC memory and the FF backup memory work together, and thus inference of different NNs is switched with low latency and low power so that the power gating standby time can be extended. Consequently, a 92% reduction in power consumption is achieved in inference at a frame rate of 60 fps as compared with a chip using static random access memory (SRAM) as the ACC memory.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568946","citationCount":"0","resultStr":"{\"title\":\"A 3-D Bank Memory System for Low-Power Neural Network Processing Achieved by Instant Context Switching and Extended Power Gating Time\",\"authors\":\"Kouhei Toyotaka;Yuto Yakubo;Kazuma Furutani;Haruki Katagiri;Masashi Fujita;Yoshinori Ando;Toru Nakura;Shunpei Yamazaki\",\"doi\":\"10.1109/JEDS.2024.3418036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a 3-D monolithic stacking memory technology of crystalline oxide semiconductor (OS) transistors, we fabricated a test chip having AI accelerator (ACC) memory for weight data of a neural network (NN), backup memory of flip-flops (FF), and CPU memory storing instructions and data. These memories are composed of two-layer OS transistors on Si CMOS, where memories in each layer correspond to a bank. In this structure, bank switching of the ACC memory and the FF backup memory work together, and thus inference of different NNs is switched with low latency and low power so that the power gating standby time can be extended. Consequently, a 92% reduction in power consumption is achieved in inference at a frame rate of 60 fps as compared with a chip using static random access memory (SRAM) as the ACC memory.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568946\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10568946/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10568946/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

利用晶体氧化物半导体(OS)晶体管的三维单片堆叠存储器技术,我们制造出了一款测试芯片,其中包括用于神经网络(NN)权重数据的人工智能加速器(ACC)存储器、触发器(FF)备份存储器以及存储指令和数据的 CPU 存储器。这些存储器由 Si CMOS 上的两层 OS 晶体管组成,每一层的存储器对应一个组。在这种结构中,ACC 存储器和 FF 备用存储器的组切换是协同工作的,因此不同 NN 的推理切换具有低延迟和低功耗的特点,从而延长了电源门控的待机时间。因此,与使用静态随机存取存储器(SRAM)作为 ACC 存储器的芯片相比,在帧速率为 60 fps 的推理过程中,功耗降低了 92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 3-D Bank Memory System for Low-Power Neural Network Processing Achieved by Instant Context Switching and Extended Power Gating Time
Using a 3-D monolithic stacking memory technology of crystalline oxide semiconductor (OS) transistors, we fabricated a test chip having AI accelerator (ACC) memory for weight data of a neural network (NN), backup memory of flip-flops (FF), and CPU memory storing instructions and data. These memories are composed of two-layer OS transistors on Si CMOS, where memories in each layer correspond to a bank. In this structure, bank switching of the ACC memory and the FF backup memory work together, and thus inference of different NNs is switched with low latency and low power so that the power gating standby time can be extended. Consequently, a 92% reduction in power consumption is achieved in inference at a frame rate of 60 fps as compared with a chip using static random access memory (SRAM) as the ACC memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1