通过界面滑动使铁电 SnS 单层恢复单元胞厚 BaTiO3 的可调多态铁电性。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-07-05 DOI:10.1021/acs.nanolett.4c02041
Chuanbao Zhang, Shunhong Zhang, Ping Cui, Zhenyu Zhang
{"title":"通过界面滑动使铁电 SnS 单层恢复单元胞厚 BaTiO3 的可调多态铁电性。","authors":"Chuanbao Zhang, Shunhong Zhang, Ping Cui, Zhenyu Zhang","doi":"10.1021/acs.nanolett.4c02041","DOIUrl":null,"url":null,"abstract":"<p><p>Stabilization of multiple polarization states at the atomic scale is pivotal for realizing high-density memory devices beyond prevailing bistable ferroelectric architectures. Here, we show that two-dimensional ferroelectric SnS or GeSe is able to revive and stabilize the ferroelectric order of three-dimensional ferroelectric BaTiO<sub>3</sub>, even when the latter is thinned to one unit cell in thickness. The underlying mechanism for overcoming the conventional detrimental critical thickness effect is attributed to facile interfacial inversion symmetry breaking by robust in-plane polarization of SnS or GeSe. Furthermore, when invoking interlayer sliding, we can stabilize multiple polarization states and achieve efficient interstate switching in the heterostructures, accompanied by dynamical ferroelectric skyrmionic excitations. When invoking sliding and twisting, the moiré domains exhibit nontrivial polar vortexes, which can be laterally displaced via different sliding schemes. These findings provide an intuitive avenue for simultaneously overcoming the standing critical thickness issue in bulk ferroelectrics and weak polarization issue in sliding ferroelectricity.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Multistate Ferroelectricity of Unit-Cell-Thick BaTiO<sub>3</sub> Revived by a Ferroelectric SnS Monolayer via Interfacial Sliding.\",\"authors\":\"Chuanbao Zhang, Shunhong Zhang, Ping Cui, Zhenyu Zhang\",\"doi\":\"10.1021/acs.nanolett.4c02041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stabilization of multiple polarization states at the atomic scale is pivotal for realizing high-density memory devices beyond prevailing bistable ferroelectric architectures. Here, we show that two-dimensional ferroelectric SnS or GeSe is able to revive and stabilize the ferroelectric order of three-dimensional ferroelectric BaTiO<sub>3</sub>, even when the latter is thinned to one unit cell in thickness. The underlying mechanism for overcoming the conventional detrimental critical thickness effect is attributed to facile interfacial inversion symmetry breaking by robust in-plane polarization of SnS or GeSe. Furthermore, when invoking interlayer sliding, we can stabilize multiple polarization states and achieve efficient interstate switching in the heterostructures, accompanied by dynamical ferroelectric skyrmionic excitations. When invoking sliding and twisting, the moiré domains exhibit nontrivial polar vortexes, which can be laterally displaced via different sliding schemes. These findings provide an intuitive avenue for simultaneously overcoming the standing critical thickness issue in bulk ferroelectrics and weak polarization issue in sliding ferroelectricity.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02041\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02041","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在原子尺度上稳定多种极化态对于实现超越现有双稳态铁电架构的高密度存储器件至关重要。在这里,我们展示了二维铁电体 SnS 或 GeSe 能够恢复和稳定三维铁电体 BaTiO3 的铁电秩序,即使后者的厚度减薄到一个单元格。克服传统的有害临界厚度效应的根本机制归因于 SnS 或 GeSe 的强大面内极化所带来的简便界面反转对称性破坏。此外,当调用层间滑动时,我们可以稳定多个极化态,并在异质结构中实现高效的态间切换,同时伴随着动态铁电天电离激发。当调用滑动和扭转时,摩尔纹域会表现出非对称的极性漩涡,这些漩涡可以通过不同的滑动方案进行横向位移。这些发现为同时克服体铁电中的静态临界厚度问题和滑动铁电中的弱极化问题提供了直观的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunable Multistate Ferroelectricity of Unit-Cell-Thick BaTiO3 Revived by a Ferroelectric SnS Monolayer via Interfacial Sliding.

Stabilization of multiple polarization states at the atomic scale is pivotal for realizing high-density memory devices beyond prevailing bistable ferroelectric architectures. Here, we show that two-dimensional ferroelectric SnS or GeSe is able to revive and stabilize the ferroelectric order of three-dimensional ferroelectric BaTiO3, even when the latter is thinned to one unit cell in thickness. The underlying mechanism for overcoming the conventional detrimental critical thickness effect is attributed to facile interfacial inversion symmetry breaking by robust in-plane polarization of SnS or GeSe. Furthermore, when invoking interlayer sliding, we can stabilize multiple polarization states and achieve efficient interstate switching in the heterostructures, accompanied by dynamical ferroelectric skyrmionic excitations. When invoking sliding and twisting, the moiré domains exhibit nontrivial polar vortexes, which can be laterally displaced via different sliding schemes. These findings provide an intuitive avenue for simultaneously overcoming the standing critical thickness issue in bulk ferroelectrics and weak polarization issue in sliding ferroelectricity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Cu(II) Specifically Disassembles Insulin Amyloid Nanostructures via Direct Interaction with Cross-β Fibrils. Direct Determination of Torsion in Twisted Graphite and MoS2 Interfaces. Improvement in ORR Durability of Fe Single-Atom Carbon Catalysts Hybridized with CeO2 Nanozyme. Magnetic Structure-Dependent Ultrafast Spin Relaxation in Magnet CrI3: A Time-Domain ab Initio Study. Single-Cell Synchro-Subtractive-Additive Nanoscale Surgery with Femtosecond Lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1