通过掺钒实现二氧化碳电解用包晶石对称电极的高效活性和高电导率

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-07-04 DOI:10.1021/acsami.4c05465
Yan Zhu, Nan Zhang, Wenyu Zhang, Ling Zhao, Yansheng Gong, Rui Wang, Huanwen Wang, Jun Jin, Beibei He
{"title":"通过掺钒实现二氧化碳电解用包晶石对称电极的高效活性和高电导率","authors":"Yan Zhu, Nan Zhang, Wenyu Zhang, Ling Zhao, Yansheng Gong, Rui Wang, Huanwen Wang, Jun Jin, Beibei He","doi":"10.1021/acsami.4c05465","DOIUrl":null,"url":null,"abstract":"<p><p>Solid oxide electrolysis cells (SOECs) show significant promise in converting CO<sub>2</sub> to valuable fuels and chemicals, yet exploiting efficient electrode materials poses a great challenge. Perovskite oxides, known for their stability as SOEC electrodes, require improvements in electrocatalytic activity and conductivity. Herein, vanadium(V) cation is newly introduced into the B-site of Sr<sub>2</sub>Fe<sub>1.5</sub>Mo<sub>0.5</sub>O<sub>6-δ</sub> perovskite to promote its electrochemical performance. The substitution of variable valence V<sup>5+</sup> for Mo<sup>6+</sup> along with the creation of oxygen vacancies contribute to improved electronic conductivity and enhanced electrocatalytic activity for CO<sub>2</sub> reduction. Notably, the Sr<sub>2</sub>Fe<sub>1.5</sub>Mo<sub>0.4</sub>V<sub>0.1</sub>O<sub>6-δ</sub> based symmetrical SOEC achieves a current density of 1.56 A cm<sup>-2</sup> at 1.5 V and 800 °C, maintaining outstanding durability over 300 h. Theoretical analysis unveils that V-doping facilitates the formation of oxygen vacancies, resulting in high intrinsic electrocatalytic activity for CO<sub>2</sub> reduction. These findings present a viable and facile strategy for advancing electrocatalysts in CO<sub>2</sub> conversion technologies.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing Efficient Activity and High Conductivity of Perovskite Symmetrical Electrode by Vanadium Doping for CO<sub>2</sub> Electrolysis.\",\"authors\":\"Yan Zhu, Nan Zhang, Wenyu Zhang, Ling Zhao, Yansheng Gong, Rui Wang, Huanwen Wang, Jun Jin, Beibei He\",\"doi\":\"10.1021/acsami.4c05465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solid oxide electrolysis cells (SOECs) show significant promise in converting CO<sub>2</sub> to valuable fuels and chemicals, yet exploiting efficient electrode materials poses a great challenge. Perovskite oxides, known for their stability as SOEC electrodes, require improvements in electrocatalytic activity and conductivity. Herein, vanadium(V) cation is newly introduced into the B-site of Sr<sub>2</sub>Fe<sub>1.5</sub>Mo<sub>0.5</sub>O<sub>6-δ</sub> perovskite to promote its electrochemical performance. The substitution of variable valence V<sup>5+</sup> for Mo<sup>6+</sup> along with the creation of oxygen vacancies contribute to improved electronic conductivity and enhanced electrocatalytic activity for CO<sub>2</sub> reduction. Notably, the Sr<sub>2</sub>Fe<sub>1.5</sub>Mo<sub>0.4</sub>V<sub>0.1</sub>O<sub>6-δ</sub> based symmetrical SOEC achieves a current density of 1.56 A cm<sup>-2</sup> at 1.5 V and 800 °C, maintaining outstanding durability over 300 h. Theoretical analysis unveils that V-doping facilitates the formation of oxygen vacancies, resulting in high intrinsic electrocatalytic activity for CO<sub>2</sub> reduction. These findings present a viable and facile strategy for advancing electrocatalysts in CO<sub>2</sub> conversion technologies.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c05465\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c05465","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物电解池(SOECs)在将二氧化碳转化为有价值的燃料和化学品方面前景广阔,但开发高效的电极材料是一项巨大的挑战。以稳定著称的包晶氧化物可用作 SOEC 电极,但需要提高其电催化活性和导电性。在这里,钒(V)阳离子被新引入到 Sr2Fe1.5Mo0.5O6-δ perovskite 的 B 位,以提高其电化学性能。用可变价的 V5+ 替代 Mo6+,同时产生氧空位,有助于提高电子传导性和增强二氧化碳还原的电催化活性。值得注意的是,基于 Sr2Fe1.5Mo0.4V0.1O6-δ 的对称 SOEC 在 1.5 V 和 800 °C 下的电流密度达到了 1.56 A cm-2,并在 300 小时内保持了出色的耐久性。这些发现为推进二氧化碳转化技术中的电催化剂提供了一种可行而简便的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realizing Efficient Activity and High Conductivity of Perovskite Symmetrical Electrode by Vanadium Doping for CO2 Electrolysis.

Solid oxide electrolysis cells (SOECs) show significant promise in converting CO2 to valuable fuels and chemicals, yet exploiting efficient electrode materials poses a great challenge. Perovskite oxides, known for their stability as SOEC electrodes, require improvements in electrocatalytic activity and conductivity. Herein, vanadium(V) cation is newly introduced into the B-site of Sr2Fe1.5Mo0.5O6-δ perovskite to promote its electrochemical performance. The substitution of variable valence V5+ for Mo6+ along with the creation of oxygen vacancies contribute to improved electronic conductivity and enhanced electrocatalytic activity for CO2 reduction. Notably, the Sr2Fe1.5Mo0.4V0.1O6-δ based symmetrical SOEC achieves a current density of 1.56 A cm-2 at 1.5 V and 800 °C, maintaining outstanding durability over 300 h. Theoretical analysis unveils that V-doping facilitates the formation of oxygen vacancies, resulting in high intrinsic electrocatalytic activity for CO2 reduction. These findings present a viable and facile strategy for advancing electrocatalysts in CO2 conversion technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Conductive PEDOT-Dominant Surface of Transparent Electrode Patch via Selective Phase Transfer for Efficient Flexible Photoelectronic Devices. Constructing Sn-Cu2O Lithiophilicity Nanowires as Stable and High-Performance Lithium Metal Anodes. Graphene Quantum Dots Reduce Hypertrophic Scar by Inducing Myofibroblasts To Be a Quiescent State. Low-Temperature Decomposition and Oxidation of the Nerve Agent Simulant on Mesoporous Nickel Oxide and Cu-Doped Nickel Oxide. Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1