在磷化镍-铁上原位生长氢氧化物,提高整体水分离性能。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-05 DOI:10.1002/smll.202402881
Jian Hu, Jiayi Yin, Aoyuan Peng, Dishu Zeng, Jinlong Ke, Jilei Liu, Kunkun Guo
{"title":"在磷化镍-铁上原位生长氢氧化物,提高整体水分离性能。","authors":"Jian Hu, Jiayi Yin, Aoyuan Peng, Dishu Zeng, Jinlong Ke, Jilei Liu, Kunkun Guo","doi":"10.1002/smll.202402881","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, three dimensional (3D) self-supported Ni-FeOH@Ni-FeP needle arrays with core-shell heterojunction structure are fabricated via in situ hydroxide growth over Ni-FeP surface. The as-prepared electrodes show an outstanding oxygen evolution reaction (OER) performance, only requiring the low overpotential of 232 mV to reach 200 mA cm<sup>-2</sup> with the Tafel slop of 40 mV dec<sup>-1</sup>. For overall water splitting, an alkaline electrolyzer with these electrodes only requires a cell voltage of 2.14 V to reach 1 A cm<sup>-2</sup>. Mechanistic investigations for such excellent electrocatalytic performances are utilized by in situ Raman spectroscopy in conjunction with density functional theory (DFT) calculations. The computation results present that Ni-FeOH@Ni-FeP attains better intrinsic conductivity and the D-band center (close to that of the ideal catalyst), thus giving superior excellent catalytic performances. Likewise, the surface Ni-FeOH layer can improve the structural stability of Ni-FeP cores and attenuate the eventual formation of irreversible FeOOH products. More importantly, the appearance of FeOOH intermediates can effectively decrease the energy barrier of NiOOH intermediates, and then rapidly accelerate the sluggish reaction dynamics, as well as further enhance the electrocatalytic activities, reversibility and cycling stability.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Hydroxide Growth over Nickel-Iron Phosphide with Enhanced Overall Water Splitting Performances.\",\"authors\":\"Jian Hu, Jiayi Yin, Aoyuan Peng, Dishu Zeng, Jinlong Ke, Jilei Liu, Kunkun Guo\",\"doi\":\"10.1002/smll.202402881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, three dimensional (3D) self-supported Ni-FeOH@Ni-FeP needle arrays with core-shell heterojunction structure are fabricated via in situ hydroxide growth over Ni-FeP surface. The as-prepared electrodes show an outstanding oxygen evolution reaction (OER) performance, only requiring the low overpotential of 232 mV to reach 200 mA cm<sup>-2</sup> with the Tafel slop of 40 mV dec<sup>-1</sup>. For overall water splitting, an alkaline electrolyzer with these electrodes only requires a cell voltage of 2.14 V to reach 1 A cm<sup>-2</sup>. Mechanistic investigations for such excellent electrocatalytic performances are utilized by in situ Raman spectroscopy in conjunction with density functional theory (DFT) calculations. The computation results present that Ni-FeOH@Ni-FeP attains better intrinsic conductivity and the D-band center (close to that of the ideal catalyst), thus giving superior excellent catalytic performances. Likewise, the surface Ni-FeOH layer can improve the structural stability of Ni-FeP cores and attenuate the eventual formation of irreversible FeOOH products. More importantly, the appearance of FeOOH intermediates can effectively decrease the energy barrier of NiOOH intermediates, and then rapidly accelerate the sluggish reaction dynamics, as well as further enhance the electrocatalytic activities, reversibility and cycling stability.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202402881\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202402881","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,通过在 Ni-FeP 表面原位生长氢氧化物,制备了具有核壳异质结结构的三维(3D)自支撑 Ni-FeOH@Ni-FeP 针阵列。制备的电极具有出色的氧进化反应(OER)性能,只需 232 mV 的低过电位即可达到 200 mA cm-2,塔菲尔斜率为 40 mV dec-1。就整体水分离而言,使用这些电极的碱性电解槽只需要 2.14 V 的电池电压就能达到 1 A cm-2。通过原位拉曼光谱和密度泛函理论(DFT)计算,对如此出色的电催化性能进行了机理研究。计算结果表明,Ni-FeOH@Ni-FeP 具有更好的本征电导率和 D 波段中心(接近理想催化剂的 D 波段中心),因此具有卓越的催化性能。同样,表面的 Ni-FeOH 层可以提高 Ni-FeP 核心的结构稳定性,并减少不可逆 FeOOH 产物的最终形成。更重要的是,FeOOH 中间产物的出现能有效降低 NiOOH 中间产物的能量势垒,进而迅速加速反应的迟滞动态,并进一步提高电催化活性、可逆性和循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Situ Hydroxide Growth over Nickel-Iron Phosphide with Enhanced Overall Water Splitting Performances.

In this work, three dimensional (3D) self-supported Ni-FeOH@Ni-FeP needle arrays with core-shell heterojunction structure are fabricated via in situ hydroxide growth over Ni-FeP surface. The as-prepared electrodes show an outstanding oxygen evolution reaction (OER) performance, only requiring the low overpotential of 232 mV to reach 200 mA cm-2 with the Tafel slop of 40 mV dec-1. For overall water splitting, an alkaline electrolyzer with these electrodes only requires a cell voltage of 2.14 V to reach 1 A cm-2. Mechanistic investigations for such excellent electrocatalytic performances are utilized by in situ Raman spectroscopy in conjunction with density functional theory (DFT) calculations. The computation results present that Ni-FeOH@Ni-FeP attains better intrinsic conductivity and the D-band center (close to that of the ideal catalyst), thus giving superior excellent catalytic performances. Likewise, the surface Ni-FeOH layer can improve the structural stability of Ni-FeP cores and attenuate the eventual formation of irreversible FeOOH products. More importantly, the appearance of FeOOH intermediates can effectively decrease the energy barrier of NiOOH intermediates, and then rapidly accelerate the sluggish reaction dynamics, as well as further enhance the electrocatalytic activities, reversibility and cycling stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
3D Wetting Gradient Janus Sports Bras for Efficient Sweat Removal: A Strategy to Improve Women's Sports Comfort and Health. Amphiphilic Nanoscale Antifog Coatings: Improved Chemical Robustness by Continuous Assembly of Polymers. An Effective Catholyte for Sulfide-Based All-Solid-State Batteries Utilizing Gas Absorbents. Arrays of Bowl-Shaped Janus Particle Film with Structured Colors. Fully Printed Multilayer Ceramic Capacitors Based on High-k Perovskite Nanosheets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1