枯木基质在促进苔藓生长方面的作用:腐烂等级和颗粒大小的影响

IF 5.9 3区 工程技术 Q1 AGRONOMY Global Change Biology Bioenergy Pub Date : 2024-07-04 DOI:10.1111/gcbb.13172
Bingyang Shi, Xiurong Wang, Shuoyuan Yang, Hongmei Chen, Yang Zhao, Qiao Liu, Rong Zou, Yannan Pan
{"title":"枯木基质在促进苔藓生长方面的作用:腐烂等级和颗粒大小的影响","authors":"Bingyang Shi,&nbsp;Xiurong Wang,&nbsp;Shuoyuan Yang,&nbsp;Hongmei Chen,&nbsp;Yang Zhao,&nbsp;Qiao Liu,&nbsp;Rong Zou,&nbsp;Yannan Pan","doi":"10.1111/gcbb.13172","DOIUrl":null,"url":null,"abstract":"<p><i>Plagiomnium acutum</i> has a high value of landscape application and medicinal value, but there is a lack of related research on propagation and cultivation techniques. The deadwood substrate has rich nutrients and superior water retention properties, which will be conducive to promoting the growth of moss. Nevertheless, the underlying mechanisms by which deadwood influences moss growth are not yet fully unclear. In this study, we pulverized deadwood from five decay classes of <i>Pinus massoniana</i> into three distinct particle sizes. Through a pot experiment, we investigated the effects of decay class and physicochemical properties on the growth and physiology of <i>Plagiomnium acutum</i>, aiming to identify the most suitable growth substrate. The results indicated that both the decay class and particle diameter of deadwood significantly affect the substrate's physicochemical characteristics and the growth indexes of <i>P. acutum</i>, with the decay class exerting a more pronounced effect. The water-holding porosity, water-holding capacity, total nitrogen, total phosphorus, total potassium and lignin content of the substrate positively affected the growth of <i>P. acutum</i>, while the bulk density, void ratio, total carbon, carbon-to-nitrogen ratio, condensed tannin content and cellulose content had negative impacts. A comprehensive evaluation using a fuzzy membership function indicated that deadwood with higher decay classes (IV and V) was more conducive to the growth of <i>P. acutum</i>. Specifically, substrates from decay class IV with particle sizes of 10–20 mm provided the most favorable conditions for <i>P. acutum</i> and were recommended as the optimal cultivation substrate. The results of this study provide theoretical basis and technical support for the propagation and cultivation of <i>P. acutum</i>, and provide a foundation for further development of the industrial, pharmaceutical and environmental biotechnology potential of <i>P. acutum</i>.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 8","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13172","citationCount":"0","resultStr":"{\"title\":\"The role of deadwood substrates in promoting moss growth: Decay class and particle size effects\",\"authors\":\"Bingyang Shi,&nbsp;Xiurong Wang,&nbsp;Shuoyuan Yang,&nbsp;Hongmei Chen,&nbsp;Yang Zhao,&nbsp;Qiao Liu,&nbsp;Rong Zou,&nbsp;Yannan Pan\",\"doi\":\"10.1111/gcbb.13172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Plagiomnium acutum</i> has a high value of landscape application and medicinal value, but there is a lack of related research on propagation and cultivation techniques. The deadwood substrate has rich nutrients and superior water retention properties, which will be conducive to promoting the growth of moss. Nevertheless, the underlying mechanisms by which deadwood influences moss growth are not yet fully unclear. In this study, we pulverized deadwood from five decay classes of <i>Pinus massoniana</i> into three distinct particle sizes. Through a pot experiment, we investigated the effects of decay class and physicochemical properties on the growth and physiology of <i>Plagiomnium acutum</i>, aiming to identify the most suitable growth substrate. The results indicated that both the decay class and particle diameter of deadwood significantly affect the substrate's physicochemical characteristics and the growth indexes of <i>P. acutum</i>, with the decay class exerting a more pronounced effect. The water-holding porosity, water-holding capacity, total nitrogen, total phosphorus, total potassium and lignin content of the substrate positively affected the growth of <i>P. acutum</i>, while the bulk density, void ratio, total carbon, carbon-to-nitrogen ratio, condensed tannin content and cellulose content had negative impacts. A comprehensive evaluation using a fuzzy membership function indicated that deadwood with higher decay classes (IV and V) was more conducive to the growth of <i>P. acutum</i>. Specifically, substrates from decay class IV with particle sizes of 10–20 mm provided the most favorable conditions for <i>P. acutum</i> and were recommended as the optimal cultivation substrate. The results of this study provide theoretical basis and technical support for the propagation and cultivation of <i>P. acutum</i>, and provide a foundation for further development of the industrial, pharmaceutical and environmental biotechnology potential of <i>P. acutum</i>.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13172\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13172","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

Plagiomnium acutum 具有很高的景观应用价值和药用价值,但在繁殖和栽培技术方面缺乏相关研究。枯木基质营养丰富、保水性能优越,有利于促进苔藓的生长。然而,枯木影响苔藓生长的内在机制尚未完全清楚。在这项研究中,我们将五种腐烂等级的马尾松枯木粉碎成三种不同的颗粒大小。通过盆栽实验,我们研究了腐朽等级和理化性质对 Plagiomnium acutum 的生长和生理的影响,旨在找出最合适的生长基质。结果表明,枯木的腐朽等级和颗粒直径都会显著影响基质的理化特性和刺五加的生长指标,其中腐朽等级的影响更为明显。基质的持水性孔隙度、持水量、总氮、总磷、总钾和木质素含量对金针虫的生长有积极影响,而容重、空隙率、总碳、碳氮比、缩合单宁含量和纤维素含量则有消极影响。使用模糊成员函数进行的综合评估表明,腐朽等级较高(IV 级和 V 级)的枯木更有利于白头翁的生长。具体而言,腐朽等级为 IV、粒径为 10-20 毫米的基质为金针虫提供了最有利的生长条件,被推荐为最佳栽培基质。该研究结果为繁殖和培养 P. acutum 提供了理论依据和技术支持,为进一步开发 P. acutum 的工业、医药和环境生物技术潜力奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of deadwood substrates in promoting moss growth: Decay class and particle size effects

Plagiomnium acutum has a high value of landscape application and medicinal value, but there is a lack of related research on propagation and cultivation techniques. The deadwood substrate has rich nutrients and superior water retention properties, which will be conducive to promoting the growth of moss. Nevertheless, the underlying mechanisms by which deadwood influences moss growth are not yet fully unclear. In this study, we pulverized deadwood from five decay classes of Pinus massoniana into three distinct particle sizes. Through a pot experiment, we investigated the effects of decay class and physicochemical properties on the growth and physiology of Plagiomnium acutum, aiming to identify the most suitable growth substrate. The results indicated that both the decay class and particle diameter of deadwood significantly affect the substrate's physicochemical characteristics and the growth indexes of P. acutum, with the decay class exerting a more pronounced effect. The water-holding porosity, water-holding capacity, total nitrogen, total phosphorus, total potassium and lignin content of the substrate positively affected the growth of P. acutum, while the bulk density, void ratio, total carbon, carbon-to-nitrogen ratio, condensed tannin content and cellulose content had negative impacts. A comprehensive evaluation using a fuzzy membership function indicated that deadwood with higher decay classes (IV and V) was more conducive to the growth of P. acutum. Specifically, substrates from decay class IV with particle sizes of 10–20 mm provided the most favorable conditions for P. acutum and were recommended as the optimal cultivation substrate. The results of this study provide theoretical basis and technical support for the propagation and cultivation of P. acutum, and provide a foundation for further development of the industrial, pharmaceutical and environmental biotechnology potential of P. acutum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
期刊最新文献
Managing Soil Carbon Sequestration: Assessing the Effects of Intermediate Crops, Crop Residue Removal, and Digestate Application on Swedish Arable Land A New Enzyme for Biodiesel Production and Food Applications: Lipase of Bacillus megaterium F25 Isolated From an Aquatic Insect Rhantus suturalis Advanced Biofuel Value Chains Sourced by New Cropping Systems With Low iLUC Risk Displacement Factors for Aerosol Emissions From Alternative Forest Biomass Use Moderate Drought Constrains Crop Growth Without Altering Soil Organic Carbon Dynamics in Perennial Cup-Plant and Silage Maize
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1