{"title":"Deep-KEDI:用于医学图像加密和解密的基于深度学习的之字形生成对抗网络。","authors":"K Selvakumar, S Lokesh","doi":"10.3233/THC-231927","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medical imaging techniques have improved to the point where security has become a basic requirement for all applications to ensure data security and data transmission over the internet. However, clinical images hold personal and sensitive data related to the patients and their disclosure has a negative impact on their right to privacy as well as legal ramifications for hospitals.</p><p><strong>Objective: </strong>In this research, a novel deep learning-based key generation network (Deep-KEDI) is designed to produce the secure key used for decrypting and encrypting medical images.</p><p><strong>Methods: </strong>Initially, medical images are pre-processed by adding the speckle noise using discrete ripplet transform before encryption and are removed after decryption for more security. In the Deep-KEDI model, the zigzag generative adversarial network (ZZ-GAN) is used as the learning network to generate the secret key.</p><p><strong>Results: </strong>The proposed ZZ-GAN is used for secure encryption by generating three different zigzag patterns (vertical, horizontal, diagonal) of encrypted images with its key. The zigzag cipher uses an XOR operation in both encryption and decryption using the proposed ZZ-GAN. Encrypting the original image requires a secret key generated during encryption. After identification, the encrypted image is decrypted using the generated key to reverse the encryption process. Finally, speckle noise is removed from the encrypted image in order to reconstruct the original image.</p><p><strong>Conclusion: </strong>According to the experiments, the Deep-KEDI model generates secret keys with an information entropy of 7.45 that is particularly suitable for securing medical images.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-KEDI: Deep learning-based zigzag generative adversarial network for encryption and decryption of medical images.\",\"authors\":\"K Selvakumar, S Lokesh\",\"doi\":\"10.3233/THC-231927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Medical imaging techniques have improved to the point where security has become a basic requirement for all applications to ensure data security and data transmission over the internet. However, clinical images hold personal and sensitive data related to the patients and their disclosure has a negative impact on their right to privacy as well as legal ramifications for hospitals.</p><p><strong>Objective: </strong>In this research, a novel deep learning-based key generation network (Deep-KEDI) is designed to produce the secure key used for decrypting and encrypting medical images.</p><p><strong>Methods: </strong>Initially, medical images are pre-processed by adding the speckle noise using discrete ripplet transform before encryption and are removed after decryption for more security. In the Deep-KEDI model, the zigzag generative adversarial network (ZZ-GAN) is used as the learning network to generate the secret key.</p><p><strong>Results: </strong>The proposed ZZ-GAN is used for secure encryption by generating three different zigzag patterns (vertical, horizontal, diagonal) of encrypted images with its key. The zigzag cipher uses an XOR operation in both encryption and decryption using the proposed ZZ-GAN. Encrypting the original image requires a secret key generated during encryption. After identification, the encrypted image is decrypted using the generated key to reverse the encryption process. Finally, speckle noise is removed from the encrypted image in order to reconstruct the original image.</p><p><strong>Conclusion: </strong>According to the experiments, the Deep-KEDI model generates secret keys with an information entropy of 7.45 that is particularly suitable for securing medical images.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-231927\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-231927","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep-KEDI: Deep learning-based zigzag generative adversarial network for encryption and decryption of medical images.
Background: Medical imaging techniques have improved to the point where security has become a basic requirement for all applications to ensure data security and data transmission over the internet. However, clinical images hold personal and sensitive data related to the patients and their disclosure has a negative impact on their right to privacy as well as legal ramifications for hospitals.
Objective: In this research, a novel deep learning-based key generation network (Deep-KEDI) is designed to produce the secure key used for decrypting and encrypting medical images.
Methods: Initially, medical images are pre-processed by adding the speckle noise using discrete ripplet transform before encryption and are removed after decryption for more security. In the Deep-KEDI model, the zigzag generative adversarial network (ZZ-GAN) is used as the learning network to generate the secret key.
Results: The proposed ZZ-GAN is used for secure encryption by generating three different zigzag patterns (vertical, horizontal, diagonal) of encrypted images with its key. The zigzag cipher uses an XOR operation in both encryption and decryption using the proposed ZZ-GAN. Encrypting the original image requires a secret key generated during encryption. After identification, the encrypted image is decrypted using the generated key to reverse the encryption process. Finally, speckle noise is removed from the encrypted image in order to reconstruct the original image.
Conclusion: According to the experiments, the Deep-KEDI model generates secret keys with an information entropy of 7.45 that is particularly suitable for securing medical images.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.