{"title":"利用大地遥感卫星数据对叙利亚沿海水域巴尼亚斯发电厂热污染进行长期监测","authors":"Assem Khatib , Badr Al-Araj , Zeina Salhab","doi":"10.1016/j.rsase.2024.101287","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal Discharge from power plants in coastal waters may significantly influence the aquatic marine environment. Today, remotely sensing data is considered one of the primary sources to monitor the thermal pollution of power plants. This research quantitatively assesses the accuracy of retrieved Landsat/TIRS Sea Surface Temperature (SST) and effectively uses archival Landsat data to monitor the thermal pollution from Baniyas Thermal Power Plant (TTP) in the Syrian coastal water for 40 years from 1984 to 2023. The results show a strong linear correlation between Landsat/TIRS retrieved and in-situ measured SST values with an RMS error of 0.84 °C, which indicates the high effectiveness of using Landsat data in monitoring thermal pollution. The results also show that the average area affected by thermal pollution was 34 ha, and the thermal pollution level average was 2.9 °C. Thermal pollution changes in the entire period were analyzed according to three phases: formation and growth (1984–1992), stability (1993–2011), and decline (2012–2023). The annual thematic maps of thermal pollution show that the thermal pollution levels gradually decreased from the Baniyas TPP outlet towards open water and did not exceed a distance of 2 km offshore. The operational capacity of Baniyas TPP exhibited an influence on both thermal pollution levels and areas. The thermal pollution spatial pattern was consistent with the surface currents on the eastern coast of the Mediterranean Sea. The methodology produced in this research could be used effectively to monitor thermal pollution using satellite remote sensing data. The thematic maps developed in this study could be used as a basis for sampling to study the effect of thermal pollution levels on aquatic organisms and then develop environmental norms in Syria about the permissible values of thermal pollution.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101287"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term monitoring of thermal pollution from Baniyas power plant in the Syrian coastal water using Landsat data\",\"authors\":\"Assem Khatib , Badr Al-Araj , Zeina Salhab\",\"doi\":\"10.1016/j.rsase.2024.101287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal Discharge from power plants in coastal waters may significantly influence the aquatic marine environment. Today, remotely sensing data is considered one of the primary sources to monitor the thermal pollution of power plants. This research quantitatively assesses the accuracy of retrieved Landsat/TIRS Sea Surface Temperature (SST) and effectively uses archival Landsat data to monitor the thermal pollution from Baniyas Thermal Power Plant (TTP) in the Syrian coastal water for 40 years from 1984 to 2023. The results show a strong linear correlation between Landsat/TIRS retrieved and in-situ measured SST values with an RMS error of 0.84 °C, which indicates the high effectiveness of using Landsat data in monitoring thermal pollution. The results also show that the average area affected by thermal pollution was 34 ha, and the thermal pollution level average was 2.9 °C. Thermal pollution changes in the entire period were analyzed according to three phases: formation and growth (1984–1992), stability (1993–2011), and decline (2012–2023). The annual thematic maps of thermal pollution show that the thermal pollution levels gradually decreased from the Baniyas TPP outlet towards open water and did not exceed a distance of 2 km offshore. The operational capacity of Baniyas TPP exhibited an influence on both thermal pollution levels and areas. The thermal pollution spatial pattern was consistent with the surface currents on the eastern coast of the Mediterranean Sea. The methodology produced in this research could be used effectively to monitor thermal pollution using satellite remote sensing data. The thematic maps developed in this study could be used as a basis for sampling to study the effect of thermal pollution levels on aquatic organisms and then develop environmental norms in Syria about the permissible values of thermal pollution.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101287\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524001514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524001514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long-term monitoring of thermal pollution from Baniyas power plant in the Syrian coastal water using Landsat data
Thermal Discharge from power plants in coastal waters may significantly influence the aquatic marine environment. Today, remotely sensing data is considered one of the primary sources to monitor the thermal pollution of power plants. This research quantitatively assesses the accuracy of retrieved Landsat/TIRS Sea Surface Temperature (SST) and effectively uses archival Landsat data to monitor the thermal pollution from Baniyas Thermal Power Plant (TTP) in the Syrian coastal water for 40 years from 1984 to 2023. The results show a strong linear correlation between Landsat/TIRS retrieved and in-situ measured SST values with an RMS error of 0.84 °C, which indicates the high effectiveness of using Landsat data in monitoring thermal pollution. The results also show that the average area affected by thermal pollution was 34 ha, and the thermal pollution level average was 2.9 °C. Thermal pollution changes in the entire period were analyzed according to three phases: formation and growth (1984–1992), stability (1993–2011), and decline (2012–2023). The annual thematic maps of thermal pollution show that the thermal pollution levels gradually decreased from the Baniyas TPP outlet towards open water and did not exceed a distance of 2 km offshore. The operational capacity of Baniyas TPP exhibited an influence on both thermal pollution levels and areas. The thermal pollution spatial pattern was consistent with the surface currents on the eastern coast of the Mediterranean Sea. The methodology produced in this research could be used effectively to monitor thermal pollution using satellite remote sensing data. The thematic maps developed in this study could be used as a basis for sampling to study the effect of thermal pollution levels on aquatic organisms and then develop environmental norms in Syria about the permissible values of thermal pollution.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems