构建具有快速界面反应动力学的 MoS2/NiS2 异质结构,实现超快钠存储

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-27 DOI:10.1016/j.nanoen.2024.109941
Yuxiang Zhang , Bo Han , Qiang Gao , Zhao Cai , Chenggang Zhou , Guangwu Hu , Jiantao Li , Ruimin Sun
{"title":"构建具有快速界面反应动力学的 MoS2/NiS2 异质结构,实现超快钠存储","authors":"Yuxiang Zhang ,&nbsp;Bo Han ,&nbsp;Qiang Gao ,&nbsp;Zhao Cai ,&nbsp;Chenggang Zhou ,&nbsp;Guangwu Hu ,&nbsp;Jiantao Li ,&nbsp;Ruimin Sun","doi":"10.1016/j.nanoen.2024.109941","DOIUrl":null,"url":null,"abstract":"<div><p>Constructing heterostructure is a valid method to reinforcing sodium storage performance of transition metal chalcogenides materials. Herein, a simple, safe and controllable one step hydrothermal method is proposed to synthesize MoS<sub>2</sub>/NiS<sub>2</sub> heterostructure. Due to the difference in band gaps and work functions of MoS<sub>2</sub> and NiS<sub>2</sub>, the charges are redistributed at the MoS<sub>2</sub>/NiS<sub>2</sub> heterointerfaces, thereby accelerating the migration of electrons and Na<sup>+</sup>. The heterointerfaces provide extra active sites for storing Na<sup>+</sup>, thus increasing the sodium storage capacity of the heterostructure. Furthermore, the distinct redox potentials of NiS<sub>2</sub> and MoS<sub>2</sub> promote the structural stability of MoS<sub>2</sub>/NiS<sub>2</sub> heterostructure during the electrochemical reaction processes. Consequently, the obtained MoS<sub>2</sub>/NiS<sub>2</sub> heterostructure exhibits superior rate properties (339.4 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>) and ultra-stable cycling stability (480.5 mAh g<sup>−1</sup> after 350 cycles at 1 A g<sup>−1</sup>). This paper presents a valid strategy for creating heterostructure anodes with excellent sodium storage properties.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of MoS2/NiS2 heterostructure with fast interfacial reaction kinetics for ultrafast sodium storage\",\"authors\":\"Yuxiang Zhang ,&nbsp;Bo Han ,&nbsp;Qiang Gao ,&nbsp;Zhao Cai ,&nbsp;Chenggang Zhou ,&nbsp;Guangwu Hu ,&nbsp;Jiantao Li ,&nbsp;Ruimin Sun\",\"doi\":\"10.1016/j.nanoen.2024.109941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constructing heterostructure is a valid method to reinforcing sodium storage performance of transition metal chalcogenides materials. Herein, a simple, safe and controllable one step hydrothermal method is proposed to synthesize MoS<sub>2</sub>/NiS<sub>2</sub> heterostructure. Due to the difference in band gaps and work functions of MoS<sub>2</sub> and NiS<sub>2</sub>, the charges are redistributed at the MoS<sub>2</sub>/NiS<sub>2</sub> heterointerfaces, thereby accelerating the migration of electrons and Na<sup>+</sup>. The heterointerfaces provide extra active sites for storing Na<sup>+</sup>, thus increasing the sodium storage capacity of the heterostructure. Furthermore, the distinct redox potentials of NiS<sub>2</sub> and MoS<sub>2</sub> promote the structural stability of MoS<sub>2</sub>/NiS<sub>2</sub> heterostructure during the electrochemical reaction processes. Consequently, the obtained MoS<sub>2</sub>/NiS<sub>2</sub> heterostructure exhibits superior rate properties (339.4 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>) and ultra-stable cycling stability (480.5 mAh g<sup>−1</sup> after 350 cycles at 1 A g<sup>−1</sup>). This paper presents a valid strategy for creating heterostructure anodes with excellent sodium storage properties.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006906\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006906","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

构建异质结构是提高过渡金属卤化物材料储钠性能的有效方法。本文提出了一种简单、安全、可控的一步水热法合成 MoS2/NiS2 异质结构。由于 MoS2 和 NiS2 的带隙和功函数不同,电荷在 MoS2/NiS2 异质界面上重新分配,从而加速了电子和 Na+ 的迁移。异质界面为储存 Na+ 提供了额外的活性位点,从而提高了异质结构的钠储存能力。此外,NiS2 和 MoS2 不同的氧化还原电位促进了 MoS2/NiS2 异质结构在电化学反应过程中的结构稳定性。因此,所获得的 MoS2/NiS2 异质结构具有卓越的速率特性(10 A g-1 时为 339.4 mAh g-1)和超稳定的循环稳定性(1 A g-1 时循环 350 次后为 480.5 mAh g-1)。本文提出了一种制造具有优异钠存储特性的异质结构阳极的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of MoS2/NiS2 heterostructure with fast interfacial reaction kinetics for ultrafast sodium storage

Constructing heterostructure is a valid method to reinforcing sodium storage performance of transition metal chalcogenides materials. Herein, a simple, safe and controllable one step hydrothermal method is proposed to synthesize MoS2/NiS2 heterostructure. Due to the difference in band gaps and work functions of MoS2 and NiS2, the charges are redistributed at the MoS2/NiS2 heterointerfaces, thereby accelerating the migration of electrons and Na+. The heterointerfaces provide extra active sites for storing Na+, thus increasing the sodium storage capacity of the heterostructure. Furthermore, the distinct redox potentials of NiS2 and MoS2 promote the structural stability of MoS2/NiS2 heterostructure during the electrochemical reaction processes. Consequently, the obtained MoS2/NiS2 heterostructure exhibits superior rate properties (339.4 mAh g−1 at 10 A g−1) and ultra-stable cycling stability (480.5 mAh g−1 after 350 cycles at 1 A g−1). This paper presents a valid strategy for creating heterostructure anodes with excellent sodium storage properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1