Yongwei Nie , Meihua Zhao , Qing Zhang , Ping Li , Jian Zhu , Hongmin Cai
{"title":"通过将姿势动作与形状分离,让静止的人重新行走","authors":"Yongwei Nie , Meihua Zhao , Qing Zhang , Ping Li , Jian Zhu , Hongmin Cai","doi":"10.1016/j.gmod.2024.101222","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the problem of animating a person in static images, the core task of which is to infer future poses for the person. Existing approaches predict future poses in the 2D space, suffering from entanglement of pose action and shape. We propose a method that generates actions in the 3D space and then transfers them to the 2D person. We first lift the 2D pose of the person to a 3D skeleton, then propose a 3D action synthesis network predicting future skeletons, and finally devise a self-supervised action transfer network that transfers the actions of 3D skeletons to the 2D person. Actions generated in the 3D space look plausible and vivid. More importantly, self-supervised action transfer allows our method to be trained only on a 3D MoCap dataset while being able to process images in different domains. Experiments on three image datasets validate the effectiveness of our method.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"134 ","pages":"Article 101222"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000109/pdfft?md5=625da7fe01537f9691e2758137e210d0&pid=1-s2.0-S1524070324000109-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Make static person walk again via separating pose action from shape\",\"authors\":\"Yongwei Nie , Meihua Zhao , Qing Zhang , Ping Li , Jian Zhu , Hongmin Cai\",\"doi\":\"10.1016/j.gmod.2024.101222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the problem of animating a person in static images, the core task of which is to infer future poses for the person. Existing approaches predict future poses in the 2D space, suffering from entanglement of pose action and shape. We propose a method that generates actions in the 3D space and then transfers them to the 2D person. We first lift the 2D pose of the person to a 3D skeleton, then propose a 3D action synthesis network predicting future skeletons, and finally devise a self-supervised action transfer network that transfers the actions of 3D skeletons to the 2D person. Actions generated in the 3D space look plausible and vivid. More importantly, self-supervised action transfer allows our method to be trained only on a 3D MoCap dataset while being able to process images in different domains. Experiments on three image datasets validate the effectiveness of our method.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"134 \",\"pages\":\"Article 101222\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000109/pdfft?md5=625da7fe01537f9691e2758137e210d0&pid=1-s2.0-S1524070324000109-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000109\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000109","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Make static person walk again via separating pose action from shape
This paper addresses the problem of animating a person in static images, the core task of which is to infer future poses for the person. Existing approaches predict future poses in the 2D space, suffering from entanglement of pose action and shape. We propose a method that generates actions in the 3D space and then transfers them to the 2D person. We first lift the 2D pose of the person to a 3D skeleton, then propose a 3D action synthesis network predicting future skeletons, and finally devise a self-supervised action transfer network that transfers the actions of 3D skeletons to the 2D person. Actions generated in the 3D space look plausible and vivid. More importantly, self-supervised action transfer allows our method to be trained only on a 3D MoCap dataset while being able to process images in different domains. Experiments on three image datasets validate the effectiveness of our method.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.