利用 FAME 加强内存取证:高级监控和执行框架

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Forensic Science International-Digital Investigation Pub Date : 2024-07-01 DOI:10.1016/j.fsidi.2024.301757
Taha Gharaibeh , Ibrahim Baggili , Anas Mahmoud
{"title":"利用 FAME 加强内存取证:高级监控和执行框架","authors":"Taha Gharaibeh ,&nbsp;Ibrahim Baggili ,&nbsp;Anas Mahmoud","doi":"10.1016/j.fsidi.2024.301757","DOIUrl":null,"url":null,"abstract":"<div><p>Memory Forensics (MF) is an essential aspect of digital investigations, but practitioners often face time-consuming challenges when using popular tools like the Volatility Framework (VF). VF, a widely-adopted Python-based memory forensics tool, presents difficulties for practitioners due to its slow performance. Thus, in this study, we evaluated methods to accelerate VF without modifying its code by testing four alternative Python Just In Time (JIT) interpreters - CPython, Pyston, PyPy, and Pyjion - using CPython as our baseline. Tests were conducted on 14 memory samples, totaling 173 GB, using a search-intensive VF plugin for Windows hosts. Employing our custom Framework for Advanced Monitoring and Execution (FAME), we deployed interpreters in Docker containers and monitored their real-time performance. A statistically significant difference was observed between the Python JIT interpreters and the standard interpreter. With PyPy emerging as the best interpreter, yielding a 15–20 % performance increase compared to the standard interpreter. Implementing PyPy has the potential to save significant time (many hours) when processing substantial memory samples. FAME enhances the efficiency of deploying and monitoring robust forensic tool testing, fostering reproducible research and yielding reliable results in both MF and the broader field of digital forensics.</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281724000763/pdfft?md5=1f7f0db390ef407e9290e4cf098b3028&pid=1-s2.0-S2666281724000763-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On enhancing memory forensics with FAME: Framework for advanced monitoring and execution\",\"authors\":\"Taha Gharaibeh ,&nbsp;Ibrahim Baggili ,&nbsp;Anas Mahmoud\",\"doi\":\"10.1016/j.fsidi.2024.301757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Memory Forensics (MF) is an essential aspect of digital investigations, but practitioners often face time-consuming challenges when using popular tools like the Volatility Framework (VF). VF, a widely-adopted Python-based memory forensics tool, presents difficulties for practitioners due to its slow performance. Thus, in this study, we evaluated methods to accelerate VF without modifying its code by testing four alternative Python Just In Time (JIT) interpreters - CPython, Pyston, PyPy, and Pyjion - using CPython as our baseline. Tests were conducted on 14 memory samples, totaling 173 GB, using a search-intensive VF plugin for Windows hosts. Employing our custom Framework for Advanced Monitoring and Execution (FAME), we deployed interpreters in Docker containers and monitored their real-time performance. A statistically significant difference was observed between the Python JIT interpreters and the standard interpreter. With PyPy emerging as the best interpreter, yielding a 15–20 % performance increase compared to the standard interpreter. Implementing PyPy has the potential to save significant time (many hours) when processing substantial memory samples. FAME enhances the efficiency of deploying and monitoring robust forensic tool testing, fostering reproducible research and yielding reliable results in both MF and the broader field of digital forensics.</p></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666281724000763/pdfft?md5=1f7f0db390ef407e9290e4cf098b3028&pid=1-s2.0-S2666281724000763-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281724000763\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281724000763","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

内存取证(MF)是数字调查的一个重要方面,但从业人员在使用 Volatility Framework(VF)等流行工具时往往面临耗时的挑战。VF 是一款广泛采用的基于 Python 的内存取证工具,由于其性能缓慢,给从业人员带来了困难。因此,在本研究中,我们以 CPython 为基线,通过测试 CPython、Pyston、PyPy 和 Pyjion 这四种可供选择的 Python 即时(JIT)解释器,评估了在不修改代码的情况下加速 VF 的方法。我们使用 Windows 主机的搜索密集型 VF 插件,对 14 个内存样本(总计 173 GB)进行了测试。我们采用定制的高级监控和执行框架(Framework for Advanced Monitoring and Execution,FAME),在 Docker 容器中部署了解释器,并监控其实时性能。在 Python JIT 解释器和标准解释器之间观察到了统计学上的明显差异。PyPy 成为最佳解释器,与标准解释器相比,性能提高了 15-20%。在处理大量内存样本时,实施 PyPy 有可能节省大量时间(许多小时)。FAME 提高了部署和监控强大取证工具测试的效率,促进了可重复的研究,并在 MF 和更广泛的数字取证领域产生了可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On enhancing memory forensics with FAME: Framework for advanced monitoring and execution

Memory Forensics (MF) is an essential aspect of digital investigations, but practitioners often face time-consuming challenges when using popular tools like the Volatility Framework (VF). VF, a widely-adopted Python-based memory forensics tool, presents difficulties for practitioners due to its slow performance. Thus, in this study, we evaluated methods to accelerate VF without modifying its code by testing four alternative Python Just In Time (JIT) interpreters - CPython, Pyston, PyPy, and Pyjion - using CPython as our baseline. Tests were conducted on 14 memory samples, totaling 173 GB, using a search-intensive VF plugin for Windows hosts. Employing our custom Framework for Advanced Monitoring and Execution (FAME), we deployed interpreters in Docker containers and monitored their real-time performance. A statistically significant difference was observed between the Python JIT interpreters and the standard interpreter. With PyPy emerging as the best interpreter, yielding a 15–20 % performance increase compared to the standard interpreter. Implementing PyPy has the potential to save significant time (many hours) when processing substantial memory samples. FAME enhances the efficiency of deploying and monitoring robust forensic tool testing, fostering reproducible research and yielding reliable results in both MF and the broader field of digital forensics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
期刊最新文献
Commentary:- Can I use that tool? Temporal metadata analysis: A learning classifier system approach Uncertainty and error in location traces Competence in digital forensics “What you say in the lab, stays in the lab”: A reflexive thematic analysis of current challenges and future directions of digital forensic investigations in the UK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1