用于 ATLAS 和 CMS 大型强子对撞机探测器的 R744 初级冷却系统的数值研究

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-05-26 DOI:10.1016/j.ijrefrig.2024.05.026
Stefanie Blust , Pierre A.C. Barroca , Yosr Allouche , Armin Hafner
{"title":"用于 ATLAS 和 CMS 大型强子对撞机探测器的 R744 初级冷却系统的数值研究","authors":"Stefanie Blust ,&nbsp;Pierre A.C. Barroca ,&nbsp;Yosr Allouche ,&nbsp;Armin Hafner","doi":"10.1016/j.ijrefrig.2024.05.026","DOIUrl":null,"url":null,"abstract":"<div><p>A R744 (CO<sub>2</sub>) refrigeration system has been designed to cool down the Large Hadron Collider (LHC) silicon detectors ATLAS and CMS, located at CERN, Switzerland. The silicon detectors are subjected to high radiation levels. The system is composed of a pri- mary CO<sub>2</sub> trans-critical booster vapor compression loop operated with piston compressors, and an oil-free liquid pumped loop on the evaporation side, to preserve the detectors. To ensure the system's reliability, the cooling facility is designed to operate under a parallel operation mode of several modular 70 kW plant units providing evaporation temperature as low as -53 °C. This layout, is also useful in case of components failure and maintenance. A numerical model is developed using a dynamic simulation software Dymola that is based on the open source Modelica modelling language. The simulation results are proven on a first demonstration plant (System A) experimentally to explore the systems control logic and to validate the reliability of the system before it is built on the detectors side. In this paper the models development is explained and the results of the experimental validation of the numerical model are shown.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0140700724001877/pdfft?md5=d33b8fbfc7ffdb824a01ce881693dbf2&pid=1-s2.0-S0140700724001877-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A numerical study of the R744 primary cooling system for ATLAS and CMS LHC detectors\",\"authors\":\"Stefanie Blust ,&nbsp;Pierre A.C. Barroca ,&nbsp;Yosr Allouche ,&nbsp;Armin Hafner\",\"doi\":\"10.1016/j.ijrefrig.2024.05.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A R744 (CO<sub>2</sub>) refrigeration system has been designed to cool down the Large Hadron Collider (LHC) silicon detectors ATLAS and CMS, located at CERN, Switzerland. The silicon detectors are subjected to high radiation levels. The system is composed of a pri- mary CO<sub>2</sub> trans-critical booster vapor compression loop operated with piston compressors, and an oil-free liquid pumped loop on the evaporation side, to preserve the detectors. To ensure the system's reliability, the cooling facility is designed to operate under a parallel operation mode of several modular 70 kW plant units providing evaporation temperature as low as -53 °C. This layout, is also useful in case of components failure and maintenance. A numerical model is developed using a dynamic simulation software Dymola that is based on the open source Modelica modelling language. The simulation results are proven on a first demonstration plant (System A) experimentally to explore the systems control logic and to validate the reliability of the system before it is built on the detectors side. In this paper the models development is explained and the results of the experimental validation of the numerical model are shown.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0140700724001877/pdfft?md5=d33b8fbfc7ffdb824a01ce881693dbf2&pid=1-s2.0-S0140700724001877-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724001877\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724001877","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计了一套 R744(二氧化碳)制冷系统,用于冷却位于瑞士欧洲核子研究中心的大型强子对撞机(LHC)硅探测器 ATLAS 和 CMS。硅探测器受到高辐射水平的影响。该系统由一个利用活塞压缩机运行的一级二氧化碳跨临界增压蒸气压缩回路和一个用于保护探测器的蒸发侧无油液体泵送回路组成。为确保系统的可靠性,冷却设施设计为多个 70 千瓦模块化设备并行运行模式,蒸发温度可低至 -53 °C。这种布局也有利于在组件故障和维护时使用。数值模型是使用基于开源 Modelica 建模语言的动态模拟软件 Dymola 开发的。仿真结果在第一个示范工厂(系统 A)上进行了实验验证,以探索系统的控制逻辑,并在探测器建成之前验证系统的可靠性。本文对模型的开发进行了说明,并展示了数值模型的实验验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A numerical study of the R744 primary cooling system for ATLAS and CMS LHC detectors

A R744 (CO2) refrigeration system has been designed to cool down the Large Hadron Collider (LHC) silicon detectors ATLAS and CMS, located at CERN, Switzerland. The silicon detectors are subjected to high radiation levels. The system is composed of a pri- mary CO2 trans-critical booster vapor compression loop operated with piston compressors, and an oil-free liquid pumped loop on the evaporation side, to preserve the detectors. To ensure the system's reliability, the cooling facility is designed to operate under a parallel operation mode of several modular 70 kW plant units providing evaporation temperature as low as -53 °C. This layout, is also useful in case of components failure and maintenance. A numerical model is developed using a dynamic simulation software Dymola that is based on the open source Modelica modelling language. The simulation results are proven on a first demonstration plant (System A) experimentally to explore the systems control logic and to validate the reliability of the system before it is built on the detectors side. In this paper the models development is explained and the results of the experimental validation of the numerical model are shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
期刊最新文献
Monitoring the heating energy performance of a heat wheel in a direct expansion air handling unit A centralized frost detection and estimation scheme for Internet-connected domestic refrigerators Research and thermal comfort analysis of the air conditioning system of the Ferris wheel car based on thermoelectric cooling Advanced model for a non-adiabatic capillary tube considering both subcooled liquid and non-equilibrium two-phase states of R-600a Quantitative detection of refrigerant charge faults in multi-unit air conditioning systems based on machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1