通过热解和热液液化法利用滩涂海藻生产生物燃料的生命周期评估

IF 7.1 Q1 ENERGY & FUELS Energy Conversion and Management-X Pub Date : 2024-07-01 DOI:10.1016/j.ecmx.2024.100647
Yuliya Kulikova , Galina Ilinykh , Natalia Sliusar , Olga Babich , Mohamed Bassyouni
{"title":"通过热解和热液液化法利用滩涂海藻生产生物燃料的生命周期评估","authors":"Yuliya Kulikova ,&nbsp;Galina Ilinykh ,&nbsp;Natalia Sliusar ,&nbsp;Olga Babich ,&nbsp;Mohamed Bassyouni","doi":"10.1016/j.ecmx.2024.100647","DOIUrl":null,"url":null,"abstract":"<div><p>Macroalgae blooms have been observed along the coastal zones of the Baltic Sea in recent decades, possibly as a result of global climate change. Excess algae biomass washed ashore the beaches reduces their attractiveness for recreational activities, produces greenhouse gases, and causes secondary pollution. To assess the most promising technology for processing excess beach-cast seaweed biomass into liquid biofuel, researchers conducted an inventory and a life cycle assessment analysis (LCA) of two thermochemical technologies: hydrothermal liquefaction (HTL) and pyrolysis. The resulting liquid fuels are expected to be used as heavy fuel oil (HFO) or fuel oil grade 6 in accordance with ASTM D396 in a mixture with HFO from fossil sources. The production of HFO from fossil sources was used as a basic comparison scenario. If one considers the possibility of replacing part of fossil hydrocarbons with synthetic fuels from seaweed biomass, the most climate-neutral would be <em>Ulva</em> sp. pyrolysis (GWP100 884.3 kg CO2-Eq per 1 Mg of fuel), but HTL would have GWP100 only for 9.6 % higher (969.6 kg CO<sub>2</sub>-Eq per 1 Mg of fuel). Environmental and climatic impacts of pyrolysis and HTL are very sensitive to the type of electricity used, so shifting from a traditional electricity source to wind energy leads to GWP100 decreasing to a level of 838 and 628 kg CO2-Eq per 1 Mg of fuel for pyrolysis and HTL, respectively, and HTL becoming a technology with less environmental impact. In baseline scenario the ozone depletion potential for the two processes under consideration is almost equal (difference is only 2.4 %). HTL is more sustainable in comparison with pyrolysis in term of human toxicity (HTL potential is 1.6 times lower) and terrestrial acidification (HTL potential is 1.9 times lower).</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001259/pdfft?md5=0f9c816e3fd79e170d0180281ff8f50c&pid=1-s2.0-S2590174524001259-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Life cycle assessments of biofuel production from beach-cast seaweed by pyrolysis and hydrothermal liquefaction\",\"authors\":\"Yuliya Kulikova ,&nbsp;Galina Ilinykh ,&nbsp;Natalia Sliusar ,&nbsp;Olga Babich ,&nbsp;Mohamed Bassyouni\",\"doi\":\"10.1016/j.ecmx.2024.100647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Macroalgae blooms have been observed along the coastal zones of the Baltic Sea in recent decades, possibly as a result of global climate change. Excess algae biomass washed ashore the beaches reduces their attractiveness for recreational activities, produces greenhouse gases, and causes secondary pollution. To assess the most promising technology for processing excess beach-cast seaweed biomass into liquid biofuel, researchers conducted an inventory and a life cycle assessment analysis (LCA) of two thermochemical technologies: hydrothermal liquefaction (HTL) and pyrolysis. The resulting liquid fuels are expected to be used as heavy fuel oil (HFO) or fuel oil grade 6 in accordance with ASTM D396 in a mixture with HFO from fossil sources. The production of HFO from fossil sources was used as a basic comparison scenario. If one considers the possibility of replacing part of fossil hydrocarbons with synthetic fuels from seaweed biomass, the most climate-neutral would be <em>Ulva</em> sp. pyrolysis (GWP100 884.3 kg CO2-Eq per 1 Mg of fuel), but HTL would have GWP100 only for 9.6 % higher (969.6 kg CO<sub>2</sub>-Eq per 1 Mg of fuel). Environmental and climatic impacts of pyrolysis and HTL are very sensitive to the type of electricity used, so shifting from a traditional electricity source to wind energy leads to GWP100 decreasing to a level of 838 and 628 kg CO2-Eq per 1 Mg of fuel for pyrolysis and HTL, respectively, and HTL becoming a technology with less environmental impact. In baseline scenario the ozone depletion potential for the two processes under consideration is almost equal (difference is only 2.4 %). HTL is more sustainable in comparison with pyrolysis in term of human toxicity (HTL potential is 1.6 times lower) and terrestrial acidification (HTL potential is 1.9 times lower).</p></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001259/pdfft?md5=0f9c816e3fd79e170d0180281ff8f50c&pid=1-s2.0-S2590174524001259-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,波罗的海沿岸地区观察到大型藻类大量繁殖,这可能是全球气候变化的结果。过量的海藻生物量被冲到海滩上,降低了海滩对休闲活动的吸引力,产生温室气体,并造成二次污染。为了评估将海滩上过剩的海藻生物质加工成液体生物燃料的最有前途的技术,研究人员对两种热化学技术:水热液化(HTL)和热解进行了盘点和生命周期评估分析(LCA)。根据 ASTM D396 标准,产生的液体燃料预计将用作重油 (HFO) 或 6 级燃料油,与化石来源的 HFO 混合使用。化石来源的重油生产被用作基本的比较方案。如果考虑到用海藻生物质合成燃料替代部分化石碳氢化合物的可能性,最不影响气候的是莼菜热解(每 1 毫克燃料的全球升温潜能值 100 为 884.3 千克二氧化碳当量),但 HTL 的全球升温潜能值 100 只高出 9.6%(每 1 毫克燃料的全球升温潜能值 100 为 969.6 千克二氧化碳当量)。热解和高温液化对环境和气候的影响对所使用的电力类型非常敏感,因此,从传统电力来源转向风能将导致热解和高温液化的 GWP100 分别降至每 1 Mg 燃料 838 千克二氧化碳当量和 628 千克二氧化碳当量的水平,而高温液化将成为对环境影响较小的技术。在基准情景下,两种工艺的臭氧消耗潜能值几乎相等(仅相差 2.4%)。就人类毒性(高温催化还原法的潜在影响低 1.6 倍)和陆地酸化(高温催化还原法的潜在影响低 1.9 倍)而言,高温催化还原法比热解法更具可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Life cycle assessments of biofuel production from beach-cast seaweed by pyrolysis and hydrothermal liquefaction

Macroalgae blooms have been observed along the coastal zones of the Baltic Sea in recent decades, possibly as a result of global climate change. Excess algae biomass washed ashore the beaches reduces their attractiveness for recreational activities, produces greenhouse gases, and causes secondary pollution. To assess the most promising technology for processing excess beach-cast seaweed biomass into liquid biofuel, researchers conducted an inventory and a life cycle assessment analysis (LCA) of two thermochemical technologies: hydrothermal liquefaction (HTL) and pyrolysis. The resulting liquid fuels are expected to be used as heavy fuel oil (HFO) or fuel oil grade 6 in accordance with ASTM D396 in a mixture with HFO from fossil sources. The production of HFO from fossil sources was used as a basic comparison scenario. If one considers the possibility of replacing part of fossil hydrocarbons with synthetic fuels from seaweed biomass, the most climate-neutral would be Ulva sp. pyrolysis (GWP100 884.3 kg CO2-Eq per 1 Mg of fuel), but HTL would have GWP100 only for 9.6 % higher (969.6 kg CO2-Eq per 1 Mg of fuel). Environmental and climatic impacts of pyrolysis and HTL are very sensitive to the type of electricity used, so shifting from a traditional electricity source to wind energy leads to GWP100 decreasing to a level of 838 and 628 kg CO2-Eq per 1 Mg of fuel for pyrolysis and HTL, respectively, and HTL becoming a technology with less environmental impact. In baseline scenario the ozone depletion potential for the two processes under consideration is almost equal (difference is only 2.4 %). HTL is more sustainable in comparison with pyrolysis in term of human toxicity (HTL potential is 1.6 times lower) and terrestrial acidification (HTL potential is 1.9 times lower).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
期刊最新文献
Water desalination using waste heat recovery of thermal power plant in tropical climate; optimization by AI Thermal management performance of a novel elliptically grooved flat heat pipe system embedded with internally cooled condenser Life cycle greenhouse gas emissions and cost of energy transport from Saudi Arabia with conventional fuels and liquefied natural gas Circulation of self-supplied water for significant energy recovery through heat integration A novel algorithm for optimizing genset operations to minimize fuel consumption in remote diesel-RES microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1