{"title":"为工业物联网系统卸载基于多信息的云-边-端协作计算任务","authors":"Xiaoge Wu","doi":"10.1016/j.phycom.2024.102432","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud–edge–end collaborative computational task offloading (CEETO) is a promising method in industrial Internet-of-things (IIoT) to support massive computational tasks generated by equipment that has low energy/computation ability. In this work, we propose a new CEETO scheme by invoking the deep learning method (DL) with the aid of a multi-information analysis approach. Firstly, considering the delay constraints of the real-time tasks and the processing ability constraints of the cloud/edge/end servers, we formulate the CEETO problem to achieve the lowest system delay by establishing contact between CEETO problem and multiple information, such as the time-related locations and tasks requirements/features. Then, we tailor a long-short term memory network (LSTMN) to analyze the relation among time, locations and task requirements/features for predicting multiple information. Finally, the predicted multiple information is utilized for the final offloading strategy generation by invoking the simulated annealing algorithm (SAA). As the proposed CEETO process is invoked based on the predictions of multiple information, it is particularly suitable for the planning, scheduling and deployment of cloud–edge–end resources in massive equipment IIoT scenarios. Simulation results show that our proposed scheme can achieve effective computational task offloading.</p></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"66 ","pages":"Article 102432"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-information based cloud–edge–end collaborative computational tasks offloading for industrial IoT systems\",\"authors\":\"Xiaoge Wu\",\"doi\":\"10.1016/j.phycom.2024.102432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cloud–edge–end collaborative computational task offloading (CEETO) is a promising method in industrial Internet-of-things (IIoT) to support massive computational tasks generated by equipment that has low energy/computation ability. In this work, we propose a new CEETO scheme by invoking the deep learning method (DL) with the aid of a multi-information analysis approach. Firstly, considering the delay constraints of the real-time tasks and the processing ability constraints of the cloud/edge/end servers, we formulate the CEETO problem to achieve the lowest system delay by establishing contact between CEETO problem and multiple information, such as the time-related locations and tasks requirements/features. Then, we tailor a long-short term memory network (LSTMN) to analyze the relation among time, locations and task requirements/features for predicting multiple information. Finally, the predicted multiple information is utilized for the final offloading strategy generation by invoking the simulated annealing algorithm (SAA). As the proposed CEETO process is invoked based on the predictions of multiple information, it is particularly suitable for the planning, scheduling and deployment of cloud–edge–end resources in massive equipment IIoT scenarios. Simulation results show that our proposed scheme can achieve effective computational task offloading.</p></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"66 \",\"pages\":\"Article 102432\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490724001502\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724001502","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multi-information based cloud–edge–end collaborative computational tasks offloading for industrial IoT systems
Cloud–edge–end collaborative computational task offloading (CEETO) is a promising method in industrial Internet-of-things (IIoT) to support massive computational tasks generated by equipment that has low energy/computation ability. In this work, we propose a new CEETO scheme by invoking the deep learning method (DL) with the aid of a multi-information analysis approach. Firstly, considering the delay constraints of the real-time tasks and the processing ability constraints of the cloud/edge/end servers, we formulate the CEETO problem to achieve the lowest system delay by establishing contact between CEETO problem and multiple information, such as the time-related locations and tasks requirements/features. Then, we tailor a long-short term memory network (LSTMN) to analyze the relation among time, locations and task requirements/features for predicting multiple information. Finally, the predicted multiple information is utilized for the final offloading strategy generation by invoking the simulated annealing algorithm (SAA). As the proposed CEETO process is invoked based on the predictions of multiple information, it is particularly suitable for the planning, scheduling and deployment of cloud–edge–end resources in massive equipment IIoT scenarios. Simulation results show that our proposed scheme can achieve effective computational task offloading.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.