由链刚性介导的具有高强度和各向异性的三维打印水凝胶。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-06 DOI:10.1002/smll.202403052
Deshuai Kong, Yunmeng Li, Biao Yang, Yaokun Pang, Hua Yuan, Cong Du, Yeqiang Tan
{"title":"由链刚性介导的具有高强度和各向异性的三维打印水凝胶。","authors":"Deshuai Kong, Yunmeng Li, Biao Yang, Yaokun Pang, Hua Yuan, Cong Du, Yeqiang Tan","doi":"10.1002/smll.202403052","DOIUrl":null,"url":null,"abstract":"<p><p>Extrusion-based 3D printing is a facile technology to construct complex structures of hydrogels, especially for tough hydrogels that have shown demonstrated potential in load-bearing materials and tissue engineering. However, 3D-printed hydrogels often possess mechanical properties that do not guarantee their usage in tissue-mimicking, load-bearing components, and motion sensors. This study proposes a novel strategy to construct high-strength and anisotropic Fe<sup>3+</sup> cross-linked poly(acrylamide-co-acrylic acid)/sodium alginate double network hydrogels. The semi-flexible sodium alginate chains act as a \"conformation regulator\" to promote the formation of strong intermolecular interactions between polymer chains and lock the more extended conformation exerted by the pre-stretch, enabling the construction of 3D-printed hydrogel structures with high orientation. The equilibrated anisotropic hydrogel filaments with a water content of 50-60 wt.% exhibit outstanding mechanical properties (tensile strength: 9-44 MPa; elongation at break: 120-668%; Young's modulus: 7-62 MPa; toughness: 26-52 MJ m<sup>-</sup> <sup>3</sup>). 3D-printed anisotropic hydrogel structures with high mechanical performance show demonstrated potential as loading-bearing structures and electrodes of flexible triboelectric nanogenerators for versatile human motion sensing.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-Printed Hydrogels with High-Strength and Anisotropy Mediated by Chain Rigidity.\",\"authors\":\"Deshuai Kong, Yunmeng Li, Biao Yang, Yaokun Pang, Hua Yuan, Cong Du, Yeqiang Tan\",\"doi\":\"10.1002/smll.202403052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extrusion-based 3D printing is a facile technology to construct complex structures of hydrogels, especially for tough hydrogels that have shown demonstrated potential in load-bearing materials and tissue engineering. However, 3D-printed hydrogels often possess mechanical properties that do not guarantee their usage in tissue-mimicking, load-bearing components, and motion sensors. This study proposes a novel strategy to construct high-strength and anisotropic Fe<sup>3+</sup> cross-linked poly(acrylamide-co-acrylic acid)/sodium alginate double network hydrogels. The semi-flexible sodium alginate chains act as a \\\"conformation regulator\\\" to promote the formation of strong intermolecular interactions between polymer chains and lock the more extended conformation exerted by the pre-stretch, enabling the construction of 3D-printed hydrogel structures with high orientation. The equilibrated anisotropic hydrogel filaments with a water content of 50-60 wt.% exhibit outstanding mechanical properties (tensile strength: 9-44 MPa; elongation at break: 120-668%; Young's modulus: 7-62 MPa; toughness: 26-52 MJ m<sup>-</sup> <sup>3</sup>). 3D-printed anisotropic hydrogel structures with high mechanical performance show demonstrated potential as loading-bearing structures and electrodes of flexible triboelectric nanogenerators for versatile human motion sensing.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202403052\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202403052","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于挤压的三维打印技术是一种构建复杂水凝胶结构的简便技术,尤其适用于已在承重材料和组织工程中显示出潜力的韧性水凝胶。然而,三维打印水凝胶的机械性能往往无法保证其在组织模拟、承重部件和运动传感器中的应用。本研究提出了一种构建高强度和各向异性 Fe3+ 交联聚(丙烯酰胺-共丙烯酸)/海藻酸钠双网络水凝胶的新策略。半柔性海藻酸钠链可作为 "构象调节器",促进聚合物链之间形成强大的分子间相互作用,并锁定预拉伸产生的更多延伸构象,从而构建出具有高取向性的三维打印水凝胶结构。含水量为 50-60 wt.%的平衡各向异性水凝胶丝具有出色的机械性能(拉伸强度:9-44 兆帕;断裂伸长率:120-668%;杨氏硬度:1.5-1.6):120-668%;杨氏模量:7-62 兆帕;韧性:26-52 兆焦耳-3)。具有高机械性能的三维打印各向异性水凝胶结构显示出作为负载承载结构和柔性三电纳米发电机电极的潜力,可用于多功能人体运动传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D-Printed Hydrogels with High-Strength and Anisotropy Mediated by Chain Rigidity.

Extrusion-based 3D printing is a facile technology to construct complex structures of hydrogels, especially for tough hydrogels that have shown demonstrated potential in load-bearing materials and tissue engineering. However, 3D-printed hydrogels often possess mechanical properties that do not guarantee their usage in tissue-mimicking, load-bearing components, and motion sensors. This study proposes a novel strategy to construct high-strength and anisotropic Fe3+ cross-linked poly(acrylamide-co-acrylic acid)/sodium alginate double network hydrogels. The semi-flexible sodium alginate chains act as a "conformation regulator" to promote the formation of strong intermolecular interactions between polymer chains and lock the more extended conformation exerted by the pre-stretch, enabling the construction of 3D-printed hydrogel structures with high orientation. The equilibrated anisotropic hydrogel filaments with a water content of 50-60 wt.% exhibit outstanding mechanical properties (tensile strength: 9-44 MPa; elongation at break: 120-668%; Young's modulus: 7-62 MPa; toughness: 26-52 MJ m- 3). 3D-printed anisotropic hydrogel structures with high mechanical performance show demonstrated potential as loading-bearing structures and electrodes of flexible triboelectric nanogenerators for versatile human motion sensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. Delivery of Synthetic Interleukin-22 mRNA to Hepatocytes via Lipid Nanoparticles Alleviates Liver Injury. Hydrodynamics and Aggregation of Nanoparticles with Protein Corona: Effects of Protein Concentration and Ionic Strength. Incorporating Zinc Metal Sites in Aluminum-Coordinated Porphyrin Metal-Organic Frameworks for Enhanced Photocatalytic Nitrogen Reduction to Ammonia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1