Selina M. Tucker , Salman I. Essajee , Cooper M. Warne , Gregory M. Dick , Michael P. Heard , Nicole Crowe , Styliani Goulopoulou , Johnathan D. Tune
{"title":"产后猪冠状动脉血流量和心肌代谢之间的平衡受损。","authors":"Selina M. Tucker , Salman I. Essajee , Cooper M. Warne , Gregory M. Dick , Michael P. Heard , Nicole Crowe , Styliani Goulopoulou , Johnathan D. Tune","doi":"10.1016/j.yjmcc.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35–45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1–30 μg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (<em>P</em> < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (<em>P</em> < 0.001), which corresponded with ∼35% reduction in myocardial oxygen consumption (MVO<sub>2</sub>) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (<em>P</em> < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (<em>P</em> < 0.05) or MVO<sub>2</sub> (<em>P</em> < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO<sub>2</sub> up to ∼135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (<em>P</em> < 0.001), increases in coronary venous PCO<sub>2</sub> (<em>P</em> < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"194 ","pages":"Pages 96-104"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired balance between coronary blood flow and myocardial metabolism in postpartum swine\",\"authors\":\"Selina M. Tucker , Salman I. Essajee , Cooper M. Warne , Gregory M. Dick , Michael P. Heard , Nicole Crowe , Styliani Goulopoulou , Johnathan D. Tune\",\"doi\":\"10.1016/j.yjmcc.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35–45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1–30 μg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (<em>P</em> < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (<em>P</em> < 0.001), which corresponded with ∼35% reduction in myocardial oxygen consumption (MVO<sub>2</sub>) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (<em>P</em> < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (<em>P</em> < 0.05) or MVO<sub>2</sub> (<em>P</em> < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO<sub>2</sub> up to ∼135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (<em>P</em> < 0.001), increases in coronary venous PCO<sub>2</sub> (<em>P</em> < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.</p></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"194 \",\"pages\":\"Pages 96-104\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002228282400110X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228282400110X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Impaired balance between coronary blood flow and myocardial metabolism in postpartum swine
Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35–45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1–30 μg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (P < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (P < 0.001), which corresponded with ∼35% reduction in myocardial oxygen consumption (MVO2) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (P < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (P < 0.05) or MVO2 (P < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO2 up to ∼135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (P < 0.001), increases in coronary venous PCO2 (P < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.