Martina Di Bratto, Antonio Origlia, Maria Di Maro, Sabrina Mennella
{"title":"基于语言学的对话模拟,评估论证式对话推荐系统","authors":"Martina Di Bratto, Antonio Origlia, Maria Di Maro, Sabrina Mennella","doi":"10.1007/s11257-024-09403-3","DOIUrl":null,"url":null,"abstract":"<p>Conversational recommender systems aim at recommending the most relevant information for users based on textual or spoken dialogues, through which users can communicate their preferences to the system more efficiently. Argumentative conversational recommender systems represent a kind of <i>deliberation</i> dialogue in which participants share their specific <i>beliefs</i> in the respective representations of the <i>common ground</i>, to act towards a common goal. The goal of such systems is to present appropriate supporting arguments to their recommendations to show the interlocutor that a specific item corresponds to their manifested interests. Here, we present a cross-disciplinary argumentation-based conversational recommender model based on cognitive pragmatics. We also present a dialogue simulator to investigate the quality of the theoretical background. We produced a set of synthetic dialogues based on a computational model implementing the linguistic theory and we collected human evaluations about the plausibility and efficiency of these dialogues. Our results show that the synthetic dialogues obtain high scores concerning their naturalness and the selection of the supporting arguments.\n</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"23 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linguistics-based dialogue simulations to evaluate argumentative conversational recommender systems\",\"authors\":\"Martina Di Bratto, Antonio Origlia, Maria Di Maro, Sabrina Mennella\",\"doi\":\"10.1007/s11257-024-09403-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conversational recommender systems aim at recommending the most relevant information for users based on textual or spoken dialogues, through which users can communicate their preferences to the system more efficiently. Argumentative conversational recommender systems represent a kind of <i>deliberation</i> dialogue in which participants share their specific <i>beliefs</i> in the respective representations of the <i>common ground</i>, to act towards a common goal. The goal of such systems is to present appropriate supporting arguments to their recommendations to show the interlocutor that a specific item corresponds to their manifested interests. Here, we present a cross-disciplinary argumentation-based conversational recommender model based on cognitive pragmatics. We also present a dialogue simulator to investigate the quality of the theoretical background. We produced a set of synthetic dialogues based on a computational model implementing the linguistic theory and we collected human evaluations about the plausibility and efficiency of these dialogues. Our results show that the synthetic dialogues obtain high scores concerning their naturalness and the selection of the supporting arguments.\\n</p>\",\"PeriodicalId\":49388,\"journal\":{\"name\":\"User Modeling and User-Adapted Interaction\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"User Modeling and User-Adapted Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11257-024-09403-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-024-09403-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Linguistics-based dialogue simulations to evaluate argumentative conversational recommender systems
Conversational recommender systems aim at recommending the most relevant information for users based on textual or spoken dialogues, through which users can communicate their preferences to the system more efficiently. Argumentative conversational recommender systems represent a kind of deliberation dialogue in which participants share their specific beliefs in the respective representations of the common ground, to act towards a common goal. The goal of such systems is to present appropriate supporting arguments to their recommendations to show the interlocutor that a specific item corresponds to their manifested interests. Here, we present a cross-disciplinary argumentation-based conversational recommender model based on cognitive pragmatics. We also present a dialogue simulator to investigate the quality of the theoretical background. We produced a set of synthetic dialogues based on a computational model implementing the linguistic theory and we collected human evaluations about the plausibility and efficiency of these dialogues. Our results show that the synthetic dialogues obtain high scores concerning their naturalness and the selection of the supporting arguments.
期刊介绍:
User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems