Gabriela Jarpa-Tauler, Vera Martínez-Barradas, Jesús Lucina Romero-Romero, Patricio Arce-Johnson
{"title":"三个高丛蓝莓(Vaccinium corymbosum L.)栽培品种的叶片和微茎的自多倍体化和离体再生","authors":"Gabriela Jarpa-Tauler, Vera Martínez-Barradas, Jesús Lucina Romero-Romero, Patricio Arce-Johnson","doi":"10.1007/s11240-024-02810-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Blueberries are a fruit with an increasing global demand due to their phytochemical and bioactive compounds content. They are promoted worldwide because of their health benefits. For optimal growth and productivity, blueberry crops need acidic soil pH, specific chilling hours, and an adequate atmospheric temperature. This delicate production equilibrium is under severe threat from climate change, potentially leading to reduced yields and increased cultivation costs unless new cultivars are developed for each edafoclimatic zone. Therefore, considering varietal replacements with more productive cultivars offering higher quality and better adaptability to local conditions is imperative. In this study, we employ polyploidization and in vitro tissue culture to promote variability and lay the foundation for new cultivar development. We report the successful induction of octoploids in three blueberry cultivars, namely ‘Biloxi’, ‘Legacy’, and ‘Duke’, through whole-genome duplication. Leaves and microstem explants were exposed to 0.1% colchicine for 24 and 48 hours in in vitro culture. After analyzing the polyploid level of 160 regenerated shoots using DNA flow cytometry, we obtained a total of 18 mutants, consisting of 8 mixoploids and 10 octoploids. The number of chloroplasts in the stomata was analyzed by fluorescence microscopy, revealing the duplication of these organelles in the induced octoploid plants. To our knowledge, this represents the first successful induction of octoploids in three blueberry cultivars -‘Biloxi,’ ‘Legacy,’ and ‘Duke’- achieved by exposing leaves and microstem explants to colchicine in in vitro culture. This technique holds promise as a valuable tool for the development of improved blueberry cultivars.</p><h3 data-test=\"abstract-sub-heading\">Key message</h3><p>This study presents the first successful induction of octoploids of three blueberry cultivars ‘Biloxi’, ‘Legacy’, and ‘Duke’ by inducing polyploidization exposing leaves and microstems explants to colchicine in in vitro culture.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"25 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autopolyploidization and in vitro regeneration of three highbush blueberry (Vaccinium corymbosum L.) cultivars from leaves and microstems\",\"authors\":\"Gabriela Jarpa-Tauler, Vera Martínez-Barradas, Jesús Lucina Romero-Romero, Patricio Arce-Johnson\",\"doi\":\"10.1007/s11240-024-02810-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Blueberries are a fruit with an increasing global demand due to their phytochemical and bioactive compounds content. They are promoted worldwide because of their health benefits. For optimal growth and productivity, blueberry crops need acidic soil pH, specific chilling hours, and an adequate atmospheric temperature. This delicate production equilibrium is under severe threat from climate change, potentially leading to reduced yields and increased cultivation costs unless new cultivars are developed for each edafoclimatic zone. Therefore, considering varietal replacements with more productive cultivars offering higher quality and better adaptability to local conditions is imperative. In this study, we employ polyploidization and in vitro tissue culture to promote variability and lay the foundation for new cultivar development. We report the successful induction of octoploids in three blueberry cultivars, namely ‘Biloxi’, ‘Legacy’, and ‘Duke’, through whole-genome duplication. Leaves and microstem explants were exposed to 0.1% colchicine for 24 and 48 hours in in vitro culture. After analyzing the polyploid level of 160 regenerated shoots using DNA flow cytometry, we obtained a total of 18 mutants, consisting of 8 mixoploids and 10 octoploids. The number of chloroplasts in the stomata was analyzed by fluorescence microscopy, revealing the duplication of these organelles in the induced octoploid plants. To our knowledge, this represents the first successful induction of octoploids in three blueberry cultivars -‘Biloxi,’ ‘Legacy,’ and ‘Duke’- achieved by exposing leaves and microstem explants to colchicine in in vitro culture. This technique holds promise as a valuable tool for the development of improved blueberry cultivars.</p><h3 data-test=\\\"abstract-sub-heading\\\">Key message</h3><p>This study presents the first successful induction of octoploids of three blueberry cultivars ‘Biloxi’, ‘Legacy’, and ‘Duke’ by inducing polyploidization exposing leaves and microstems explants to colchicine in in vitro culture.</p>\",\"PeriodicalId\":20219,\"journal\":{\"name\":\"Plant Cell, Tissue and Organ Culture\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell, Tissue and Organ Culture\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11240-024-02810-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02810-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Autopolyploidization and in vitro regeneration of three highbush blueberry (Vaccinium corymbosum L.) cultivars from leaves and microstems
Abstract
Blueberries are a fruit with an increasing global demand due to their phytochemical and bioactive compounds content. They are promoted worldwide because of their health benefits. For optimal growth and productivity, blueberry crops need acidic soil pH, specific chilling hours, and an adequate atmospheric temperature. This delicate production equilibrium is under severe threat from climate change, potentially leading to reduced yields and increased cultivation costs unless new cultivars are developed for each edafoclimatic zone. Therefore, considering varietal replacements with more productive cultivars offering higher quality and better adaptability to local conditions is imperative. In this study, we employ polyploidization and in vitro tissue culture to promote variability and lay the foundation for new cultivar development. We report the successful induction of octoploids in three blueberry cultivars, namely ‘Biloxi’, ‘Legacy’, and ‘Duke’, through whole-genome duplication. Leaves and microstem explants were exposed to 0.1% colchicine for 24 and 48 hours in in vitro culture. After analyzing the polyploid level of 160 regenerated shoots using DNA flow cytometry, we obtained a total of 18 mutants, consisting of 8 mixoploids and 10 octoploids. The number of chloroplasts in the stomata was analyzed by fluorescence microscopy, revealing the duplication of these organelles in the induced octoploid plants. To our knowledge, this represents the first successful induction of octoploids in three blueberry cultivars -‘Biloxi,’ ‘Legacy,’ and ‘Duke’- achieved by exposing leaves and microstem explants to colchicine in in vitro culture. This technique holds promise as a valuable tool for the development of improved blueberry cultivars.
Key message
This study presents the first successful induction of octoploids of three blueberry cultivars ‘Biloxi’, ‘Legacy’, and ‘Duke’ by inducing polyploidization exposing leaves and microstems explants to colchicine in in vitro culture.
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.