{"title":"先进基因组编辑工具在植物生物技术和作物改良方面的潜力:进展与挑战","authors":"Anis Ben-Amar","doi":"10.1007/s11240-024-02807-4","DOIUrl":null,"url":null,"abstract":"<p>Climate change has made plants more vulnerable to various stresses, which presents a significant threat to the world’s food supply. Despite several efforts deployed over the last three decades in plant breeding and genetic engineering, there is still a lot to be done for crop improvement. CRISPR/Cas is a naturally occurring genome editing tool adopted from the bacterial adaptive immune defense system. Gene editing has undergone a revolutionary change since the discovery of CRISPR/Cas-based genome engineering. This emerging technology recently implemented, has enabled targeted mutagenesis with unprecedented simplicity and accuracy, making it suitable to edit DNA sequences at site-specific targets with ultimate precision. Currently, this cutting-edge technology has been extensively used and incessantly improved at several orders of magnitude to contribute as a robust approach for studying gene function with a variety of applications that can accelerate basic and applied research toward crop improvement. This mini-review briefly describes some of the major achievements in genome editing tools and highlights future outlooks for these technologies in functional genomics and applied plant biotechnology.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"14 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of advanced genome editing tools in plant biotechnology and crop improvement: progress and challenges\",\"authors\":\"Anis Ben-Amar\",\"doi\":\"10.1007/s11240-024-02807-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change has made plants more vulnerable to various stresses, which presents a significant threat to the world’s food supply. Despite several efforts deployed over the last three decades in plant breeding and genetic engineering, there is still a lot to be done for crop improvement. CRISPR/Cas is a naturally occurring genome editing tool adopted from the bacterial adaptive immune defense system. Gene editing has undergone a revolutionary change since the discovery of CRISPR/Cas-based genome engineering. This emerging technology recently implemented, has enabled targeted mutagenesis with unprecedented simplicity and accuracy, making it suitable to edit DNA sequences at site-specific targets with ultimate precision. Currently, this cutting-edge technology has been extensively used and incessantly improved at several orders of magnitude to contribute as a robust approach for studying gene function with a variety of applications that can accelerate basic and applied research toward crop improvement. This mini-review briefly describes some of the major achievements in genome editing tools and highlights future outlooks for these technologies in functional genomics and applied plant biotechnology.</p>\",\"PeriodicalId\":20219,\"journal\":{\"name\":\"Plant Cell, Tissue and Organ Culture\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell, Tissue and Organ Culture\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11240-024-02807-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02807-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
气候变化使植物更容易受到各种压力的影响,这对世界粮食供应构成了重大威胁。尽管过去三十年来在植物育种和基因工程方面做出了许多努力,但在作物改良方面仍有许多工作要做。CRISPR/Cas 是一种从细菌适应性免疫防御系统中自然产生的基因组编辑工具。自发现基于 CRISPR/Cas 的基因组工程以来,基因编辑发生了革命性的变化。这一新兴技术最近得到了应用,以前所未有的简便性和准确性实现了定向诱变,使其适用于在特定位点上对 DNA 序列进行终极精确编辑。目前,这项前沿技术已得到广泛应用,并以几个数量级的速度不断改进,成为研究基因功能的有力方法,其多种应用可加速作物改良的基础研究和应用研究。这篇微型综述简要介绍了基因组编辑工具的一些主要成就,并重点展望了这些技术在功能基因组学和应用植物生物技术方面的未来前景。
Potential of advanced genome editing tools in plant biotechnology and crop improvement: progress and challenges
Climate change has made plants more vulnerable to various stresses, which presents a significant threat to the world’s food supply. Despite several efforts deployed over the last three decades in plant breeding and genetic engineering, there is still a lot to be done for crop improvement. CRISPR/Cas is a naturally occurring genome editing tool adopted from the bacterial adaptive immune defense system. Gene editing has undergone a revolutionary change since the discovery of CRISPR/Cas-based genome engineering. This emerging technology recently implemented, has enabled targeted mutagenesis with unprecedented simplicity and accuracy, making it suitable to edit DNA sequences at site-specific targets with ultimate precision. Currently, this cutting-edge technology has been extensively used and incessantly improved at several orders of magnitude to contribute as a robust approach for studying gene function with a variety of applications that can accelerate basic and applied research toward crop improvement. This mini-review briefly describes some of the major achievements in genome editing tools and highlights future outlooks for these technologies in functional genomics and applied plant biotechnology.
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.