{"title":"使用天然聚合物的双层镀膜隐形眼镜的药物释放和物理特性","authors":"Hye Ji Kim, Hyun Mee Lee","doi":"10.1007/s13233-024-00289-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to develop contact lenses with improved drug-release duration time by layer-by-layer (LBL) coating with natural polymers on contact lenses containing the drug gatifloxacin. LBL coating was performed in single and double layers on contact lenses containing gatifloxaxin using natural polymers carrageenan and polylysine. The performance of contact lenses was evaluated based on various physical properties and antibacterial properties. As a result, contact lenses containing gatifloxacin have reduced physical properties compared to lenses without gatifloxacin. As the concentration of gatifloxacin increased, oxygen permeability and wettability decreased, and antibacterial properties increased. LBL coating improved the wettability and antibacterial properties of contact lenses and increased the drug-release duration. Double-layers coated lenses increased the duration of drug release more than single-coated lenses.</p><h3>Graphic Abstract</h3><p>Double layer-coating with poly-L-lysine and carrageenan on contact lenses</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13233-024-00289-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Drug release and physical properties of double layers coated contact lenses using natural polymers\",\"authors\":\"Hye Ji Kim, Hyun Mee Lee\",\"doi\":\"10.1007/s13233-024-00289-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to develop contact lenses with improved drug-release duration time by layer-by-layer (LBL) coating with natural polymers on contact lenses containing the drug gatifloxacin. LBL coating was performed in single and double layers on contact lenses containing gatifloxaxin using natural polymers carrageenan and polylysine. The performance of contact lenses was evaluated based on various physical properties and antibacterial properties. As a result, contact lenses containing gatifloxacin have reduced physical properties compared to lenses without gatifloxacin. As the concentration of gatifloxacin increased, oxygen permeability and wettability decreased, and antibacterial properties increased. LBL coating improved the wettability and antibacterial properties of contact lenses and increased the drug-release duration. Double-layers coated lenses increased the duration of drug release more than single-coated lenses.</p><h3>Graphic Abstract</h3><p>Double layer-coating with poly-L-lysine and carrageenan on contact lenses</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13233-024-00289-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13233-024-00289-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00289-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Drug release and physical properties of double layers coated contact lenses using natural polymers
This study aims to develop contact lenses with improved drug-release duration time by layer-by-layer (LBL) coating with natural polymers on contact lenses containing the drug gatifloxacin. LBL coating was performed in single and double layers on contact lenses containing gatifloxaxin using natural polymers carrageenan and polylysine. The performance of contact lenses was evaluated based on various physical properties and antibacterial properties. As a result, contact lenses containing gatifloxacin have reduced physical properties compared to lenses without gatifloxacin. As the concentration of gatifloxacin increased, oxygen permeability and wettability decreased, and antibacterial properties increased. LBL coating improved the wettability and antibacterial properties of contact lenses and increased the drug-release duration. Double-layers coated lenses increased the duration of drug release more than single-coated lenses.
Graphic Abstract
Double layer-coating with poly-L-lysine and carrageenan on contact lenses
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.