{"title":"考虑到任意强度和屈服标准约束的多材料拓扑优化,采用单变量插值法","authors":"Wenjie Ding, Haitao Liao, Xujin Yuan","doi":"10.1002/nme.7561","DOIUrl":null,"url":null,"abstract":"<p>Material heterogeneity gives composite constructions unique mechanical and physical qualities. Combining multiple materials takes full use of these features in stress-constrained topology optimization. Traditional research in this field often assumes a consistent yield criterion for all possible materials but adapts their stiffness and strengths accordingly. To cope with this challenge, an innovative single-variable interpolation approach is proposed to enable the simultaneous inclusion of distinct yield criteria and material strengths. A stress-constrained topology optimization formulation is presented based on this yield function interpolation method, which can independently support various materials with different elastic characteristics, material strengths, and yield criteria. Then, the large-scale problem of local stress constraints can be effectively solved by the Augmented Lagrangian (AL) method. Several two-dimensional (2D) and three-dimensional (3D) design scenarios are investigated to reduce the overall mass of the structure while considering stress constraints. The optimal composite designs exhibit several crucial benefits resulting from material heterogeneity, including the enlargement of the design possibilities, the dispersion of stress, and the utilization of asymmetry in tension-compression strength.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-material topology optimization considering arbitrary strength and yield criteria constraints with single-variable interpolation\",\"authors\":\"Wenjie Ding, Haitao Liao, Xujin Yuan\",\"doi\":\"10.1002/nme.7561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Material heterogeneity gives composite constructions unique mechanical and physical qualities. Combining multiple materials takes full use of these features in stress-constrained topology optimization. Traditional research in this field often assumes a consistent yield criterion for all possible materials but adapts their stiffness and strengths accordingly. To cope with this challenge, an innovative single-variable interpolation approach is proposed to enable the simultaneous inclusion of distinct yield criteria and material strengths. A stress-constrained topology optimization formulation is presented based on this yield function interpolation method, which can independently support various materials with different elastic characteristics, material strengths, and yield criteria. Then, the large-scale problem of local stress constraints can be effectively solved by the Augmented Lagrangian (AL) method. Several two-dimensional (2D) and three-dimensional (3D) design scenarios are investigated to reduce the overall mass of the structure while considering stress constraints. The optimal composite designs exhibit several crucial benefits resulting from material heterogeneity, including the enlargement of the design possibilities, the dispersion of stress, and the utilization of asymmetry in tension-compression strength.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7561\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7561","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-material topology optimization considering arbitrary strength and yield criteria constraints with single-variable interpolation
Material heterogeneity gives composite constructions unique mechanical and physical qualities. Combining multiple materials takes full use of these features in stress-constrained topology optimization. Traditional research in this field often assumes a consistent yield criterion for all possible materials but adapts their stiffness and strengths accordingly. To cope with this challenge, an innovative single-variable interpolation approach is proposed to enable the simultaneous inclusion of distinct yield criteria and material strengths. A stress-constrained topology optimization formulation is presented based on this yield function interpolation method, which can independently support various materials with different elastic characteristics, material strengths, and yield criteria. Then, the large-scale problem of local stress constraints can be effectively solved by the Augmented Lagrangian (AL) method. Several two-dimensional (2D) and three-dimensional (3D) design scenarios are investigated to reduce the overall mass of the structure while considering stress constraints. The optimal composite designs exhibit several crucial benefits resulting from material heterogeneity, including the enlargement of the design possibilities, the dispersion of stress, and the utilization of asymmetry in tension-compression strength.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.