Nguyen Huu Hieu, Dang Thanh Cong Minh, Phan Nguyen Minh, Che Quang Cong, Nguyen Thanh Hoai Nam, Nguyen Huu Hieu, Nguyen Tuong Vy, Tran Do Dat, Nguyen Minh Dat, Mai Thanh Phong
{"title":"利用榆叶梅叶提取物/氰基修饰的氮化石墨碳纳米片植物辅助制备 Fe2O3 纳米鳍片以提高光催化效率","authors":"Nguyen Huu Hieu, Dang Thanh Cong Minh, Phan Nguyen Minh, Che Quang Cong, Nguyen Thanh Hoai Nam, Nguyen Huu Hieu, Nguyen Tuong Vy, Tran Do Dat, Nguyen Minh Dat, Mai Thanh Phong","doi":"10.1007/s11244-024-01974-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, iron oxide nanofins (Fe<sub>2</sub>O<sub>3</sub> NFs) were synthesized using <i>Elaeocarpus hygrophilus</i> leaves extract and decorated on graphitic carbon nitride (gCN) substrate to form the Fe<sub>2</sub>O<sub>3</sub>/gCN composite, as a photocatalytic candidate to degrade Rhodamine B (RhB) and produce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). The morphological, structural, electrochemical, and optical properties of Fe<sub>2</sub>O<sub>3</sub>/gCN were determined via analytical methods, including scanning electron microscopy, energy dispersive X-ray, scanning electron microscopy field emission, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV-DRS), electrochemical impedance spectroscopy, and photocurrent repones. As a result, the band gap of Fe<sub>2</sub>O<sub>3</sub>/gCN was determined to be 2.79 eV through UV-DRS and Kubelka–Munk function, which is lower than that of pure gCN (2.82 eV). Such phenomenon provides an RhB photodegradation efficiency of 99.23% within 120 min at pH 4, as well as an H<sub>2</sub>O<sub>2</sub> concentration of 4237.03 μM/g h under visible light radiation, over the 1.0Fe<sub>2</sub>O<sub>3</sub>/gCN sample. Further insights elucidate that <b>⋅</b>O<sub>2</sub><sup>–</sup> plays an important part in the photocatalysis, contributing to light-driven RhB degradation and H<sub>2</sub>O<sub>2</sub> production. The catalytic performance of 1.0Fe<sub>2</sub>O<sub>3</sub>/gCN was also maintained after 4 consecutive cycles, which indicates a high potential for environmental remediation and cleaner production processes using light as the driving force.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1211 - 1225"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phyto-Assisted Preparation of Fe2O3 Nanofins Using Elaeocarpus hygrophilus Leaves Extract/Cyano Group Modified Graphitic Carbon Nitride Nanosheets for Enhancing Photocatalytic Efficiency\",\"authors\":\"Nguyen Huu Hieu, Dang Thanh Cong Minh, Phan Nguyen Minh, Che Quang Cong, Nguyen Thanh Hoai Nam, Nguyen Huu Hieu, Nguyen Tuong Vy, Tran Do Dat, Nguyen Minh Dat, Mai Thanh Phong\",\"doi\":\"10.1007/s11244-024-01974-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, iron oxide nanofins (Fe<sub>2</sub>O<sub>3</sub> NFs) were synthesized using <i>Elaeocarpus hygrophilus</i> leaves extract and decorated on graphitic carbon nitride (gCN) substrate to form the Fe<sub>2</sub>O<sub>3</sub>/gCN composite, as a photocatalytic candidate to degrade Rhodamine B (RhB) and produce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). The morphological, structural, electrochemical, and optical properties of Fe<sub>2</sub>O<sub>3</sub>/gCN were determined via analytical methods, including scanning electron microscopy, energy dispersive X-ray, scanning electron microscopy field emission, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV-DRS), electrochemical impedance spectroscopy, and photocurrent repones. As a result, the band gap of Fe<sub>2</sub>O<sub>3</sub>/gCN was determined to be 2.79 eV through UV-DRS and Kubelka–Munk function, which is lower than that of pure gCN (2.82 eV). Such phenomenon provides an RhB photodegradation efficiency of 99.23% within 120 min at pH 4, as well as an H<sub>2</sub>O<sub>2</sub> concentration of 4237.03 μM/g h under visible light radiation, over the 1.0Fe<sub>2</sub>O<sub>3</sub>/gCN sample. Further insights elucidate that <b>⋅</b>O<sub>2</sub><sup>–</sup> plays an important part in the photocatalysis, contributing to light-driven RhB degradation and H<sub>2</sub>O<sub>2</sub> production. The catalytic performance of 1.0Fe<sub>2</sub>O<sub>3</sub>/gCN was also maintained after 4 consecutive cycles, which indicates a high potential for environmental remediation and cleaner production processes using light as the driving force.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"67 17-18\",\"pages\":\"1211 - 1225\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11244-024-01974-0\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11244-024-01974-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Phyto-Assisted Preparation of Fe2O3 Nanofins Using Elaeocarpus hygrophilus Leaves Extract/Cyano Group Modified Graphitic Carbon Nitride Nanosheets for Enhancing Photocatalytic Efficiency
In this study, iron oxide nanofins (Fe2O3 NFs) were synthesized using Elaeocarpus hygrophilus leaves extract and decorated on graphitic carbon nitride (gCN) substrate to form the Fe2O3/gCN composite, as a photocatalytic candidate to degrade Rhodamine B (RhB) and produce hydrogen peroxide (H2O2). The morphological, structural, electrochemical, and optical properties of Fe2O3/gCN were determined via analytical methods, including scanning electron microscopy, energy dispersive X-ray, scanning electron microscopy field emission, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV-DRS), electrochemical impedance spectroscopy, and photocurrent repones. As a result, the band gap of Fe2O3/gCN was determined to be 2.79 eV through UV-DRS and Kubelka–Munk function, which is lower than that of pure gCN (2.82 eV). Such phenomenon provides an RhB photodegradation efficiency of 99.23% within 120 min at pH 4, as well as an H2O2 concentration of 4237.03 μM/g h under visible light radiation, over the 1.0Fe2O3/gCN sample. Further insights elucidate that ⋅O2– plays an important part in the photocatalysis, contributing to light-driven RhB degradation and H2O2 production. The catalytic performance of 1.0Fe2O3/gCN was also maintained after 4 consecutive cycles, which indicates a high potential for environmental remediation and cleaner production processes using light as the driving force.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.