实现飞机软机器人检测:概述与展望

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY MRS Communications Pub Date : 2024-07-03 DOI:10.1557/s43579-024-00586-9
LoriAnne Groo, Abigail T. Juhl, Luke A. Baldwin
{"title":"实现飞机软机器人检测:概述与展望","authors":"LoriAnne Groo, Abigail T. Juhl, Luke A. Baldwin","doi":"10.1557/s43579-024-00586-9","DOIUrl":null,"url":null,"abstract":"<p>Aircraft in both the commercial and defense sectors undergo significant disassembly in order to access and inspect critical structures and components. To limit the extent of disassembly needed and thus increase system availability, the concept of mobile robotic inspection has been notionally discussed for over 20 years. Notably this interest in mobile robotic inspection extends beyond aircraft to include civil infrastructure, pipelines, and nuclear plants where some robotic platforms are currently in use. However, the unique challenges associated with complex aircraft systems and structures remain to be addressed. With advancements in the fields of durable polymers, autonomous materials, flexible electronics, tailorable actuation, and others, soft robotics are an increasingly viable solution to the challenge of inspection in access-limited spaces. This perspective article will overview key advancements in pertinent technical areas and highlight scientific barriers to wide-spread use and acceptance of soft robotics for aircraft inspection.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"75 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward soft robotic inspection for aircraft: An overview and perspective\",\"authors\":\"LoriAnne Groo, Abigail T. Juhl, Luke A. Baldwin\",\"doi\":\"10.1557/s43579-024-00586-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aircraft in both the commercial and defense sectors undergo significant disassembly in order to access and inspect critical structures and components. To limit the extent of disassembly needed and thus increase system availability, the concept of mobile robotic inspection has been notionally discussed for over 20 years. Notably this interest in mobile robotic inspection extends beyond aircraft to include civil infrastructure, pipelines, and nuclear plants where some robotic platforms are currently in use. However, the unique challenges associated with complex aircraft systems and structures remain to be addressed. With advancements in the fields of durable polymers, autonomous materials, flexible electronics, tailorable actuation, and others, soft robotics are an increasingly viable solution to the challenge of inspection in access-limited spaces. This perspective article will overview key advancements in pertinent technical areas and highlight scientific barriers to wide-spread use and acceptance of soft robotics for aircraft inspection.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00586-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00586-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

商业和国防领域的飞机都需要进行大量拆卸,以便接触和检查关键结构和部件。为了限制所需的拆卸程度,从而提高系统的可用性,移动机器人检测的概念已经讨论了 20 多年。值得注意的是,人们对移动机器人检测的兴趣已经超越了飞机,延伸到了民用基础设施、管道和核电站,这些地方目前也在使用一些机器人平台。然而,与复杂的飞机系统和结构相关的独特挑战仍有待解决。随着耐用聚合物、自主材料、柔性电子器件、可定制的驱动装置等领域的进步,软机器人技术日益成为应对有限空间检测挑战的可行解决方案。本视角文章将概述相关技术领域的主要进展,并强调在飞机检测中广泛使用和接受软机器人技术的科学障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward soft robotic inspection for aircraft: An overview and perspective

Aircraft in both the commercial and defense sectors undergo significant disassembly in order to access and inspect critical structures and components. To limit the extent of disassembly needed and thus increase system availability, the concept of mobile robotic inspection has been notionally discussed for over 20 years. Notably this interest in mobile robotic inspection extends beyond aircraft to include civil infrastructure, pipelines, and nuclear plants where some robotic platforms are currently in use. However, the unique challenges associated with complex aircraft systems and structures remain to be addressed. With advancements in the fields of durable polymers, autonomous materials, flexible electronics, tailorable actuation, and others, soft robotics are an increasingly viable solution to the challenge of inspection in access-limited spaces. This perspective article will overview key advancements in pertinent technical areas and highlight scientific barriers to wide-spread use and acceptance of soft robotics for aircraft inspection.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MRS Communications
MRS Communications MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
10.50%
发文量
166
审稿时长
>12 weeks
期刊介绍: MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.
期刊最新文献
Design of fabrication-tolerant meta-atoms for polarization-multiplexed metasurfaces Early Career Materials Researcher Issue 2D materials-based ink to develop meta-structures for electromagnetic interference (EMI) shielding Current trends in macromolecular synthesis of inorganic nanoparticles Understanding surfaces and interfaces in nanocomposites of silicone and barium titanate through experiments and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1