Ariel M Cabrera, Michele Guerrini, Henry P Pinto and Caterina Cocchi
{"title":"从第一原理看碘化甲铵铅的超快电荷载流子动力学","authors":"Ariel M Cabrera, Michele Guerrini, Henry P Pinto and Caterina Cocchi","doi":"10.1088/2516-1075/ad5b40","DOIUrl":null,"url":null,"abstract":"Methylammonium lead iodide (MAPbI3) has been a major focus of photovoltaic research for the last decade. The unique interplay between the structural and electronic properties of this material contributes to its exciting optical properties especially under the action of an ultrafast laser pulse. First-principles methods like real-time time-dependent density functional theory (RT-TDDFT) enable performing corresponding simulations without the aid of empirical parameters: the gained knowledge can be applied to future studies of other complex materials. In this work, we investigate the ultrafast charge-carrier dynamics and the nonlinear optical response of MAPbI3 excited by a resonant pulse above the gap. First, we examine the electronic and optical properties in the static regime. Next, we impinge the system with a femtosecond field of varying intensity and follow the evolution of the photoexcited carrier density. A pronounced intensity-dependent response is observed, manifested by high-harmonic generation and nonlinear trends in the number of excited electrons and excitation energy. Our results provide relevant indications about the behavior of MAPbI3 under strong and coherent radiation and confirm that RT-TDDFT is a viable tool to simulate the photo-induced dynamics of complex materials from first principles.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast charge carrier dynamics of methylammonium lead iodide from first principles\",\"authors\":\"Ariel M Cabrera, Michele Guerrini, Henry P Pinto and Caterina Cocchi\",\"doi\":\"10.1088/2516-1075/ad5b40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methylammonium lead iodide (MAPbI3) has been a major focus of photovoltaic research for the last decade. The unique interplay between the structural and electronic properties of this material contributes to its exciting optical properties especially under the action of an ultrafast laser pulse. First-principles methods like real-time time-dependent density functional theory (RT-TDDFT) enable performing corresponding simulations without the aid of empirical parameters: the gained knowledge can be applied to future studies of other complex materials. In this work, we investigate the ultrafast charge-carrier dynamics and the nonlinear optical response of MAPbI3 excited by a resonant pulse above the gap. First, we examine the electronic and optical properties in the static regime. Next, we impinge the system with a femtosecond field of varying intensity and follow the evolution of the photoexcited carrier density. A pronounced intensity-dependent response is observed, manifested by high-harmonic generation and nonlinear trends in the number of excited electrons and excitation energy. Our results provide relevant indications about the behavior of MAPbI3 under strong and coherent radiation and confirm that RT-TDDFT is a viable tool to simulate the photo-induced dynamics of complex materials from first principles.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/ad5b40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad5b40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrafast charge carrier dynamics of methylammonium lead iodide from first principles
Methylammonium lead iodide (MAPbI3) has been a major focus of photovoltaic research for the last decade. The unique interplay between the structural and electronic properties of this material contributes to its exciting optical properties especially under the action of an ultrafast laser pulse. First-principles methods like real-time time-dependent density functional theory (RT-TDDFT) enable performing corresponding simulations without the aid of empirical parameters: the gained knowledge can be applied to future studies of other complex materials. In this work, we investigate the ultrafast charge-carrier dynamics and the nonlinear optical response of MAPbI3 excited by a resonant pulse above the gap. First, we examine the electronic and optical properties in the static regime. Next, we impinge the system with a femtosecond field of varying intensity and follow the evolution of the photoexcited carrier density. A pronounced intensity-dependent response is observed, manifested by high-harmonic generation and nonlinear trends in the number of excited electrons and excitation energy. Our results provide relevant indications about the behavior of MAPbI3 under strong and coherent radiation and confirm that RT-TDDFT is a viable tool to simulate the photo-induced dynamics of complex materials from first principles.