Slawomir Simbierowicz, Massimo Borrelli, Volodymyr Monarkha, Ville Nuutinen, Russell E. Lake
{"title":"解决量子位固有的热噪声问题","authors":"Slawomir Simbierowicz, Massimo Borrelli, Volodymyr Monarkha, Ville Nuutinen, Russell E. Lake","doi":"10.1103/prxquantum.5.030302","DOIUrl":null,"url":null,"abstract":"Qubit-specific measurement in a superconducting quantum processor requires physical interconnects that traverse 4 orders of magnitude in temperature from 293 K to 10 mK. Although the quantum processor can be thermalized and shielded from electromagnetic noise, the interconnects themselves introduce an unavoidable remote heat bath that causes decoherence of quantum states. In the present work, we report quantitative and device-independent measurements of the power radiated to the quantum processor from its control lines. Our results have been obtained using a calibrated bolometer that operates within a millikelvin environment with time-resolved measurement capability. In the limit of zero applied power, the noise power emitted to the quantum processor is equivalent to that of a blackbody with temperature 63–71 mK for the prototypical drive lines in the study. Experimentally, we increase the applied power of a simulated control signal to map out the resulting temperature rise and thermal time constant of five prototypical drive-line varieties. We input the data to an open quantum system model to demonstrate the trade-off between dissipated signal power, transmon-qubit lifetime, pure dephasing, gate fidelity, and the implied decoherence rates due to self-heating during microwave operations. Beyond explaining dephasing rates observed in the literature, our work sets the stage for accurate noise modeling in novel quantum computer interfacing methods due to our device-agnostic approach.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inherent Thermal-Noise Problem in Addressing Qubits\",\"authors\":\"Slawomir Simbierowicz, Massimo Borrelli, Volodymyr Monarkha, Ville Nuutinen, Russell E. Lake\",\"doi\":\"10.1103/prxquantum.5.030302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Qubit-specific measurement in a superconducting quantum processor requires physical interconnects that traverse 4 orders of magnitude in temperature from 293 K to 10 mK. Although the quantum processor can be thermalized and shielded from electromagnetic noise, the interconnects themselves introduce an unavoidable remote heat bath that causes decoherence of quantum states. In the present work, we report quantitative and device-independent measurements of the power radiated to the quantum processor from its control lines. Our results have been obtained using a calibrated bolometer that operates within a millikelvin environment with time-resolved measurement capability. In the limit of zero applied power, the noise power emitted to the quantum processor is equivalent to that of a blackbody with temperature 63–71 mK for the prototypical drive lines in the study. Experimentally, we increase the applied power of a simulated control signal to map out the resulting temperature rise and thermal time constant of five prototypical drive-line varieties. We input the data to an open quantum system model to demonstrate the trade-off between dissipated signal power, transmon-qubit lifetime, pure dephasing, gate fidelity, and the implied decoherence rates due to self-heating during microwave operations. Beyond explaining dephasing rates observed in the literature, our work sets the stage for accurate noise modeling in novel quantum computer interfacing methods due to our device-agnostic approach.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inherent Thermal-Noise Problem in Addressing Qubits
Qubit-specific measurement in a superconducting quantum processor requires physical interconnects that traverse 4 orders of magnitude in temperature from 293 K to 10 mK. Although the quantum processor can be thermalized and shielded from electromagnetic noise, the interconnects themselves introduce an unavoidable remote heat bath that causes decoherence of quantum states. In the present work, we report quantitative and device-independent measurements of the power radiated to the quantum processor from its control lines. Our results have been obtained using a calibrated bolometer that operates within a millikelvin environment with time-resolved measurement capability. In the limit of zero applied power, the noise power emitted to the quantum processor is equivalent to that of a blackbody with temperature 63–71 mK for the prototypical drive lines in the study. Experimentally, we increase the applied power of a simulated control signal to map out the resulting temperature rise and thermal time constant of five prototypical drive-line varieties. We input the data to an open quantum system model to demonstrate the trade-off between dissipated signal power, transmon-qubit lifetime, pure dephasing, gate fidelity, and the implied decoherence rates due to self-heating during microwave operations. Beyond explaining dephasing rates observed in the literature, our work sets the stage for accurate noise modeling in novel quantum computer interfacing methods due to our device-agnostic approach.