在没有输入控制的情况下学习量子过程

Marco Fanizza, Yihui Quek, Matteo Rosati
{"title":"在没有输入控制的情况下学习量子过程","authors":"Marco Fanizza, Yihui Quek, Matteo Rosati","doi":"10.1103/prxquantum.5.020367","DOIUrl":null,"url":null,"abstract":"We introduce a general statistical learning theory for processes that take as input a classical random variable and output a quantum state. Our setting is motivated by the practical situation in which one desires to learn a quantum process governed by classical parameters that are out of one’s control. This framework is applicable, for example, to the study of astronomical phenomena, disordered systems and biological processes not controlled by the observer. We provide an algorithm for learning with high probability in this setting with a finite amount of samples, even if the concept class is infinite. To do this, we review and adapt existing algorithms for shadow tomography and hypothesis selection, and combine their guarantees with the uniform convergence on the data of the loss functions of interest. As a byproduct, we obtain sufficient conditions for performing shadow tomography of classical-quantum states with a number of copies, which depends on the dimension of the quantum register, but not on the dimension of the classical one. We give concrete examples of processes that can be learned in this manner, based on quantum circuits or physically motivated classes, such as systems governed by Hamiltonians with random perturbations or data-dependent phase shifts.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Quantum Processes Without Input Control\",\"authors\":\"Marco Fanizza, Yihui Quek, Matteo Rosati\",\"doi\":\"10.1103/prxquantum.5.020367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a general statistical learning theory for processes that take as input a classical random variable and output a quantum state. Our setting is motivated by the practical situation in which one desires to learn a quantum process governed by classical parameters that are out of one’s control. This framework is applicable, for example, to the study of astronomical phenomena, disordered systems and biological processes not controlled by the observer. We provide an algorithm for learning with high probability in this setting with a finite amount of samples, even if the concept class is infinite. To do this, we review and adapt existing algorithms for shadow tomography and hypothesis selection, and combine their guarantees with the uniform convergence on the data of the loss functions of interest. As a byproduct, we obtain sufficient conditions for performing shadow tomography of classical-quantum states with a number of copies, which depends on the dimension of the quantum register, but not on the dimension of the classical one. We give concrete examples of processes that can be learned in this manner, based on quantum circuits or physically motivated classes, such as systems governed by Hamiltonians with random perturbations or data-dependent phase shifts.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为输入经典随机变量并输出量子态的过程引入了一般统计学习理论。我们的设定是基于这样一种实际情况:人们希望学习一个由经典参数控制的量子过程,而经典参数是不受自己控制的。例如,这一框架适用于研究不受观察者控制的天文现象、无序系统和生物过程。我们提供了一种算法,即使概念类是无限的,也能在这种情况下利用有限的样本量进行高概率学习。为此,我们回顾并调整了现有的阴影层析和假设选择算法,并将它们与相关损失函数在数据上的均匀收敛性结合起来。作为副产品,我们获得了对经典-量子态进行影子断层扫描的充分条件,其副本数量取决于量子寄存器的维度,而不取决于经典寄存器的维度。我们给出了可以通过这种方式学习的过程的具体例子,这些过程基于量子电路或物理类别,例如由具有随机扰动或数据相关相移的哈密顿所支配的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Quantum Processes Without Input Control
We introduce a general statistical learning theory for processes that take as input a classical random variable and output a quantum state. Our setting is motivated by the practical situation in which one desires to learn a quantum process governed by classical parameters that are out of one’s control. This framework is applicable, for example, to the study of astronomical phenomena, disordered systems and biological processes not controlled by the observer. We provide an algorithm for learning with high probability in this setting with a finite amount of samples, even if the concept class is infinite. To do this, we review and adapt existing algorithms for shadow tomography and hypothesis selection, and combine their guarantees with the uniform convergence on the data of the loss functions of interest. As a byproduct, we obtain sufficient conditions for performing shadow tomography of classical-quantum states with a number of copies, which depends on the dimension of the quantum register, but not on the dimension of the classical one. We give concrete examples of processes that can be learned in this manner, based on quantum circuits or physically motivated classes, such as systems governed by Hamiltonians with random perturbations or data-dependent phase shifts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1