Bo Sun, Teresa Brecht, Bryan H. Fong, Moonmoon Akmal, Jacob Z. Blumoff, Tyler A. Cain, Faustin W. Carter, Dylan H. Finestone, Micha N. Fireman, Wonill Ha, Anthony T. Hatke, Ryan M. Hickey, Clayton A. C. Jackson, Ian Jenkins, Aaron M. Jones, Andrew Pan, Daniel R. Ward, Aaron J. Weinstein, Samuel J. Whiteley, Parker Williams, Matthew G. Borselli, Matthew T. Rakher, Thaddeus D. Ladd
{"title":"三重量子点自旋量子位中的全派生动态解耦","authors":"Bo Sun, Teresa Brecht, Bryan H. Fong, Moonmoon Akmal, Jacob Z. Blumoff, Tyler A. Cain, Faustin W. Carter, Dylan H. Finestone, Micha N. Fireman, Wonill Ha, Anthony T. Hatke, Ryan M. Hickey, Clayton A. C. Jackson, Ian Jenkins, Aaron M. Jones, Andrew Pan, Daniel R. Ward, Aaron J. Weinstein, Samuel J. Whiteley, Parker Williams, Matthew G. Borselli, Matthew T. Rakher, Thaddeus D. Ladd","doi":"10.1103/prxquantum.5.020356","DOIUrl":null,"url":null,"abstract":"Dynamical decoupling of spin qubits in silicon can increase fidelity and can be used to extract the frequency spectra of noise processes. We demonstrate a full-permutation dynamical decoupling technique that cyclically exchanges the spins in a triple-quantum-dot qubit. This sequence not only suppresses both low-frequency charge-noise-induced and magnetic-noise-induced errors; it also refocuses leakage errors to first order, which is particularly interesting for encoded exchange-only qubits. For a specific construction, which we call “NZ1y,” the qubit is isolated from error sources to such a degree that we measure a remarkable exchange pulse error of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2.8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math>. This sequence maintains a quantum state for roughly 18,000 exchange pulses, extending the qubit coherence from <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mn>2</mn><mo>∗</mo></msubsup><mo>=</mo><mn>2</mn><mspace width=\"0.2em\"></mspace><mtext>μ</mtext><mspace width=\"-0.5pt\"></mspace><mrow><mi mathvariant=\"normal\">s</mi></mrow></math> to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mn>2</mn></msub><mo>=</mo><mn>720</mn><mspace width=\"0.2em\"></mspace><mtext>μ</mtext><mspace width=\"-0.5pt\"></mspace><mrow><mi mathvariant=\"normal\">s</mi></mrow></math>. We experimentally validate an error model that includes <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>/</mo><mi>f</mi></math> charge noise and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>/</mo><mi>f</mi></math> magnetic noise in two ways: by direct exchange-qubit simulation and by integration of the assumed noise spectra with derived filter functions, both of which reproduce the measured error and leakage with respect to a change of the repetition rate.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-Permutation Dynamical Decoupling in Triple-Quantum-Dot Spin Qubits\",\"authors\":\"Bo Sun, Teresa Brecht, Bryan H. Fong, Moonmoon Akmal, Jacob Z. Blumoff, Tyler A. Cain, Faustin W. Carter, Dylan H. Finestone, Micha N. Fireman, Wonill Ha, Anthony T. Hatke, Ryan M. Hickey, Clayton A. C. Jackson, Ian Jenkins, Aaron M. Jones, Andrew Pan, Daniel R. Ward, Aaron J. Weinstein, Samuel J. Whiteley, Parker Williams, Matthew G. Borselli, Matthew T. Rakher, Thaddeus D. Ladd\",\"doi\":\"10.1103/prxquantum.5.020356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamical decoupling of spin qubits in silicon can increase fidelity and can be used to extract the frequency spectra of noise processes. We demonstrate a full-permutation dynamical decoupling technique that cyclically exchanges the spins in a triple-quantum-dot qubit. This sequence not only suppresses both low-frequency charge-noise-induced and magnetic-noise-induced errors; it also refocuses leakage errors to first order, which is particularly interesting for encoded exchange-only qubits. For a specific construction, which we call “NZ1y,” the qubit is isolated from error sources to such a degree that we measure a remarkable exchange pulse error of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2.8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math>. This sequence maintains a quantum state for roughly 18,000 exchange pulses, extending the qubit coherence from <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mn>2</mn><mo>∗</mo></msubsup><mo>=</mo><mn>2</mn><mspace width=\\\"0.2em\\\"></mspace><mtext>μ</mtext><mspace width=\\\"-0.5pt\\\"></mspace><mrow><mi mathvariant=\\\"normal\\\">s</mi></mrow></math> to <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mn>2</mn></msub><mo>=</mo><mn>720</mn><mspace width=\\\"0.2em\\\"></mspace><mtext>μ</mtext><mspace width=\\\"-0.5pt\\\"></mspace><mrow><mi mathvariant=\\\"normal\\\">s</mi></mrow></math>. We experimentally validate an error model that includes <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn><mo>/</mo><mi>f</mi></math> charge noise and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn><mo>/</mo><mi>f</mi></math> magnetic noise in two ways: by direct exchange-qubit simulation and by integration of the assumed noise spectra with derived filter functions, both of which reproduce the measured error and leakage with respect to a change of the repetition rate.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full-Permutation Dynamical Decoupling in Triple-Quantum-Dot Spin Qubits
Dynamical decoupling of spin qubits in silicon can increase fidelity and can be used to extract the frequency spectra of noise processes. We demonstrate a full-permutation dynamical decoupling technique that cyclically exchanges the spins in a triple-quantum-dot qubit. This sequence not only suppresses both low-frequency charge-noise-induced and magnetic-noise-induced errors; it also refocuses leakage errors to first order, which is particularly interesting for encoded exchange-only qubits. For a specific construction, which we call “NZ1y,” the qubit is isolated from error sources to such a degree that we measure a remarkable exchange pulse error of . This sequence maintains a quantum state for roughly 18,000 exchange pulses, extending the qubit coherence from to . We experimentally validate an error model that includes charge noise and magnetic noise in two ways: by direct exchange-qubit simulation and by integration of the assumed noise spectra with derived filter functions, both of which reproduce the measured error and leakage with respect to a change of the repetition rate.