用正方形最小覆盖正交多边形的高效精确算法

Anubhav Dhar, Subham Ghosh, Sudeshna Kolay
{"title":"用正方形最小覆盖正交多边形的高效精确算法","authors":"Anubhav Dhar, Subham Ghosh, Sudeshna Kolay","doi":"arxiv-2407.02658","DOIUrl":null,"url":null,"abstract":"The Orthogonal Polygon Covering with Squares (OPCS) problem takes as input an\northogonal polygon $P$ without holes with $n$ vertices, where vertices have\nintegral coordinates. The aim is to find a minimum number of axis-parallel,\npossibly overlapping squares which lie completely inside $P$, such that their\nunion covers the entire region inside $P$. Aupperle et.\nal~\\cite{aupperle1988covering} provide an $\\mathcal O(N^{1.5})$-time algorithm\nto solve OPCS for orthogonal polygons without holes, where $N$ is the number of\nintegral lattice points lying in the interior or on the boundary of $P$.\nDesigning algorithms for OPCS with a running time polynomial in $n$ (the number\nof vertices of $P$) was discussed as an open question in\n\\cite{aupperle1988covering}, since $N$ can be exponentially larger than $n$. In\nthis paper we design a polynomial-time exact algorithm for OPCS with a running\ntime of $\\mathcal O(n^{14})$. We also consider the following structural parameterized version of the\nproblem. A knob in an orthogonal polygon is a polygon edge whose both endpoints\nare convex polygon vertices. Given an input orthogonal polygon with $n$\nvertices and $k$ knobs, we design an algorithm for OPCS with running time\n$\\mathcal O(n^2 + k^{14} \\cdot n)$. In \\cite{aupperle1988covering}, the Orthogonal Polygon with Holes Covering\nwith Squares (OPCSH) problem is also studied where orthogonal polygon could\nhave holes, and the objective is to find a minimum square covering of the input\npolygon. This is shown to be NP-complete. We think there is an error in the\nexisting proof in \\cite{aupperle1988covering}, where a reduction from Planar\n3-CNF is shown. We fix this error in the proof with an alternate construction\nof one of the gadgets used in the reduction, hence completing the proof of\nNP-completeness of OPCSH.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Exact Algorithms for Minimum Covering of Orthogonal Polygons with Squares\",\"authors\":\"Anubhav Dhar, Subham Ghosh, Sudeshna Kolay\",\"doi\":\"arxiv-2407.02658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Orthogonal Polygon Covering with Squares (OPCS) problem takes as input an\\northogonal polygon $P$ without holes with $n$ vertices, where vertices have\\nintegral coordinates. The aim is to find a minimum number of axis-parallel,\\npossibly overlapping squares which lie completely inside $P$, such that their\\nunion covers the entire region inside $P$. Aupperle et.\\nal~\\\\cite{aupperle1988covering} provide an $\\\\mathcal O(N^{1.5})$-time algorithm\\nto solve OPCS for orthogonal polygons without holes, where $N$ is the number of\\nintegral lattice points lying in the interior or on the boundary of $P$.\\nDesigning algorithms for OPCS with a running time polynomial in $n$ (the number\\nof vertices of $P$) was discussed as an open question in\\n\\\\cite{aupperle1988covering}, since $N$ can be exponentially larger than $n$. In\\nthis paper we design a polynomial-time exact algorithm for OPCS with a running\\ntime of $\\\\mathcal O(n^{14})$. We also consider the following structural parameterized version of the\\nproblem. A knob in an orthogonal polygon is a polygon edge whose both endpoints\\nare convex polygon vertices. Given an input orthogonal polygon with $n$\\nvertices and $k$ knobs, we design an algorithm for OPCS with running time\\n$\\\\mathcal O(n^2 + k^{14} \\\\cdot n)$. In \\\\cite{aupperle1988covering}, the Orthogonal Polygon with Holes Covering\\nwith Squares (OPCSH) problem is also studied where orthogonal polygon could\\nhave holes, and the objective is to find a minimum square covering of the input\\npolygon. This is shown to be NP-complete. We think there is an error in the\\nexisting proof in \\\\cite{aupperle1988covering}, where a reduction from Planar\\n3-CNF is shown. We fix this error in the proof with an alternate construction\\nof one of the gadgets used in the reduction, hence completing the proof of\\nNP-completeness of OPCSH.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用正方形覆盖正交多边形(OPCS)问题的输入是一个顶点为 $n$ 的无洞正交多边形 $P$,其中顶点具有积分坐标。该问题的目的是找到完全位于 $P$ 内部的轴平行、可能重叠的正方形的最少数目,从而使它们的联合体覆盖 $P$ 内部的整个区域。Aupperle et.al~cite{aupperle1988covering} 提供了一种 O(N^{1.5} 时的算法来求解无洞正交多边形的 OPCS,其中 $N$ 是位于 $P$ 内部或边界上的积分网格点的数目。由于 $N$ 可以指数级地大于 $n$,因此设计运行时间为 $n$($P$ 的顶点数)多项式的 OPCS 算法在《aupperle1988covering》一文中被作为一个未决问题进行了讨论。在本文中,我们为 OPCS 设计了一种多项式时间精确算法,其运行时间为 $mathcal O(n^{14})$。我们还考虑了以下结构参数化版本的问题。正交多边形中的节点是一条多边形边,它的两个端点都是凸多边形的顶点。给定一个有 $n$ 顶点和 $k$ 节点的输入正交多边形,我们设计了一种运行时间为 $mathcal O(n^2 + k^{14} \cdot n)$ 的 OPCS 算法。在《aupperle1988covering》中,我们还研究了带孔正交多边形的正方形覆盖(OPCSH)问题,在这个问题中,正交多边形可能有孔,目标是找到输入多边形的最小正方形覆盖。结果表明这是一个 NP-完全问题。我们认为 \cite{aupperle1988covering}中的现有证明存在错误,该证明展示了从 Planar3-CNF 的还原。我们用还原中使用的一个小工具的另一种构造来修正证明中的这个错误,从而完成了 OPCSH 的 NP-完备性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Exact Algorithms for Minimum Covering of Orthogonal Polygons with Squares
The Orthogonal Polygon Covering with Squares (OPCS) problem takes as input an orthogonal polygon $P$ without holes with $n$ vertices, where vertices have integral coordinates. The aim is to find a minimum number of axis-parallel, possibly overlapping squares which lie completely inside $P$, such that their union covers the entire region inside $P$. Aupperle et. al~\cite{aupperle1988covering} provide an $\mathcal O(N^{1.5})$-time algorithm to solve OPCS for orthogonal polygons without holes, where $N$ is the number of integral lattice points lying in the interior or on the boundary of $P$. Designing algorithms for OPCS with a running time polynomial in $n$ (the number of vertices of $P$) was discussed as an open question in \cite{aupperle1988covering}, since $N$ can be exponentially larger than $n$. In this paper we design a polynomial-time exact algorithm for OPCS with a running time of $\mathcal O(n^{14})$. We also consider the following structural parameterized version of the problem. A knob in an orthogonal polygon is a polygon edge whose both endpoints are convex polygon vertices. Given an input orthogonal polygon with $n$ vertices and $k$ knobs, we design an algorithm for OPCS with running time $\mathcal O(n^2 + k^{14} \cdot n)$. In \cite{aupperle1988covering}, the Orthogonal Polygon with Holes Covering with Squares (OPCSH) problem is also studied where orthogonal polygon could have holes, and the objective is to find a minimum square covering of the input polygon. This is shown to be NP-complete. We think there is an error in the existing proof in \cite{aupperle1988covering}, where a reduction from Planar 3-CNF is shown. We fix this error in the proof with an alternate construction of one of the gadgets used in the reduction, hence completing the proof of NP-completeness of OPCSH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1