立体阻碍诱导的低激子结合能可实现低驱动力有机太阳能电池

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY Aggregate (Hoboken, N.J.) Pub Date : 2024-07-02 DOI:10.1002/agt2.632
Tianyu Hu, Xufan Zheng, Ting Wang, Aziz Saparbaev, Bowen Gao, Jingnan Wu, Jingyi Xiong, Ming Wan, Tingting Cong, Yuda Li, Ergang Wang, Xunchang Wang, Renqiang Yang
{"title":"立体阻碍诱导的低激子结合能可实现低驱动力有机太阳能电池","authors":"Tianyu Hu,&nbsp;Xufan Zheng,&nbsp;Ting Wang,&nbsp;Aziz Saparbaev,&nbsp;Bowen Gao,&nbsp;Jingnan Wu,&nbsp;Jingyi Xiong,&nbsp;Ming Wan,&nbsp;Tingting Cong,&nbsp;Yuda Li,&nbsp;Ergang Wang,&nbsp;Xunchang Wang,&nbsp;Renqiang Yang","doi":"10.1002/agt2.632","DOIUrl":null,"url":null,"abstract":"<p>Exciton binding energy (<i>E</i><sub>b</sub>) has been regarded as a critical parameter in charge separation during photovoltaic conversion. Minimizing the <i>E</i><sub>b</sub> of the photovoltaic materials can facilitate the exciton dissociation in low-driving force organic solar cells (OSCs) and thus improve the power conversion efficiency (PCE); nevertheless, diminishing the <i>E</i><sub>b</sub> with deliberate design principles remains a significant challenge. Herein, bulky side chain as steric hindrance structure was inserted into Y-series acceptors to minimize the <i>E</i><sub>b</sub> by modulating the intra- and intermolecular interaction. Theoretical and experimental results indicate that steric hindrance-induced optimal intra- and intermolecular interaction can enhance molecular polarizability, promote electronic orbital overlap between molecules, and facilitate delocalized charge transfer pathways, thereby resulting in a low <i>E</i><sub>b</sub>. The conspicuously reduced <i>E</i><sub>b</sub> obtained in Y-ChC5 with pinpoint steric hindrance modulation can minimize the detrimental effects on exciton dissociation in low-driving-force OSCs, achieving a remarkable PCE of 19.1% with over 95% internal quantum efficiency. Our study provides a new molecular design rationale to reduce the <i>E</i><sub>b</sub>.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"5 5","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.632","citationCount":"0","resultStr":"{\"title\":\"Steric hindrance induced low exciton binding energy enables low-driving-force organic solar cells\",\"authors\":\"Tianyu Hu,&nbsp;Xufan Zheng,&nbsp;Ting Wang,&nbsp;Aziz Saparbaev,&nbsp;Bowen Gao,&nbsp;Jingnan Wu,&nbsp;Jingyi Xiong,&nbsp;Ming Wan,&nbsp;Tingting Cong,&nbsp;Yuda Li,&nbsp;Ergang Wang,&nbsp;Xunchang Wang,&nbsp;Renqiang Yang\",\"doi\":\"10.1002/agt2.632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exciton binding energy (<i>E</i><sub>b</sub>) has been regarded as a critical parameter in charge separation during photovoltaic conversion. Minimizing the <i>E</i><sub>b</sub> of the photovoltaic materials can facilitate the exciton dissociation in low-driving force organic solar cells (OSCs) and thus improve the power conversion efficiency (PCE); nevertheless, diminishing the <i>E</i><sub>b</sub> with deliberate design principles remains a significant challenge. Herein, bulky side chain as steric hindrance structure was inserted into Y-series acceptors to minimize the <i>E</i><sub>b</sub> by modulating the intra- and intermolecular interaction. Theoretical and experimental results indicate that steric hindrance-induced optimal intra- and intermolecular interaction can enhance molecular polarizability, promote electronic orbital overlap between molecules, and facilitate delocalized charge transfer pathways, thereby resulting in a low <i>E</i><sub>b</sub>. The conspicuously reduced <i>E</i><sub>b</sub> obtained in Y-ChC5 with pinpoint steric hindrance modulation can minimize the detrimental effects on exciton dissociation in low-driving-force OSCs, achieving a remarkable PCE of 19.1% with over 95% internal quantum efficiency. Our study provides a new molecular design rationale to reduce the <i>E</i><sub>b</sub>.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.632\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激子结合能(Eb)一直被视为光电转换过程中电荷分离的关键参数。将光伏材料的 Eb 降到最低可以促进低驱动力有机太阳能电池(OSC)中激子的解离,从而提高功率转换效率(PCE);然而,通过深思熟虑的设计原则降低 Eb 仍然是一项重大挑战。在此,我们在 Y 系列受体中加入了作为立体阻碍结构的笨重侧链,通过调节分子内和分子间的相互作用将 Eb 降到最低。理论和实验结果表明,立体阻碍引起的最佳分子内和分子间相互作用可提高分子极化性,促进分子间电子轨道重叠,并促进电荷转移的非局域化途径,从而实现低 Eb。通过精确的立体阻碍调制,Y-ChC5 中的 Eb 明显降低,从而最大限度地减少了对低驱动力 OSC 中激子解离的不利影响,实现了 19.1% 的出色 PCE 和超过 95% 的内部量子效率。我们的研究为降低 Eb 提供了新的分子设计原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steric hindrance induced low exciton binding energy enables low-driving-force organic solar cells

Exciton binding energy (Eb) has been regarded as a critical parameter in charge separation during photovoltaic conversion. Minimizing the Eb of the photovoltaic materials can facilitate the exciton dissociation in low-driving force organic solar cells (OSCs) and thus improve the power conversion efficiency (PCE); nevertheless, diminishing the Eb with deliberate design principles remains a significant challenge. Herein, bulky side chain as steric hindrance structure was inserted into Y-series acceptors to minimize the Eb by modulating the intra- and intermolecular interaction. Theoretical and experimental results indicate that steric hindrance-induced optimal intra- and intermolecular interaction can enhance molecular polarizability, promote electronic orbital overlap between molecules, and facilitate delocalized charge transfer pathways, thereby resulting in a low Eb. The conspicuously reduced Eb obtained in Y-ChC5 with pinpoint steric hindrance modulation can minimize the detrimental effects on exciton dissociation in low-driving-force OSCs, achieving a remarkable PCE of 19.1% with over 95% internal quantum efficiency. Our study provides a new molecular design rationale to reduce the Eb.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Issue Information Inside Front Cover: Stimuli-responsive photoluminescent copper(I) halides for scintillation, anticounterfeiting, and light-emitting diode applications Inside Back Cover: Supramolecular self-assembled nanoparticles for targeted therapy of myocardial infarction by enhancing cardiomyocyte mitophagy Front Cover: Steric hindrance induced low exciton binding energy enables low-driving-force organic solar cells Back Cover: Lysine aggregates-based nanostructured antimicrobial peptides for cariogenic biofilm microenvironment-activated caries treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1