{"title":"图上瓦瑟斯坦空间的汉密尔顿-雅可比方程的好求性","authors":"Wilfrid Gangbo, Chenchen Mou, Andrzej Święch","doi":"10.1007/s00526-024-02758-w","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"77 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness for Hamilton–Jacobi equations on the Wasserstein space on graphs\",\"authors\":\"Wilfrid Gangbo, Chenchen Mou, Andrzej Święch\",\"doi\":\"10.1007/s00526-024-02758-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02758-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02758-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Well-posedness for Hamilton–Jacobi equations on the Wasserstein space on graphs
In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.