Yingying Tang, Yongfeng Xia, Dongxu Yao, Ming Zhu, Jun Zhao, Yu-Ping Zeng
{"title":"萤石型多孔(Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ高熵陶瓷的导热性和机械特性","authors":"Yingying Tang, Yongfeng Xia, Dongxu Yao, Ming Zhu, Jun Zhao, Yu-Ping Zeng","doi":"10.1007/s10934-024-01653-1","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal insulation materials must exhibit superior mechanical properties alongside exceptional thermal insulation conductivity. However, traditional porous ceramics often struggle to meet these dual requirements simultaneously. In high-entropy materials, the phonon scattering induced by lattice distortion effects can significantly reduce the thermal conductivity of ceramics, thus opening new avenues for the design of novel thermal insulation materials. Inspired by the high-entropy effect, this study employed solid-state reaction methods to synthesize (Ce<sub>0.2</sub>Zr<sub>0.2</sub>Ti<sub>0.2</sub>Sn<sub>0.2</sub>Ca<sub>0.2</sub>)O<sub>2−δ</sub> (CZTSC) high-entropy ceramics at various temperatures, investigating their phase constituents, microstructural characteristics, and mechanical properties, while exploring the optimal sintering temperature. Additionally, a pore-forming agent method was utilized to fabricate monophasic CZTSC porous ceramics with different porosities at 1400 °C. Specifically, when the pore-forming agent content was 20 wt%, the sample exhibited an apparent porosity of 42.82%, with a low thermal conductivity of 0.57 W·m<sup>− 1</sup>·K<sup>− 1</sup>, a low thermal diffusivity of 0.406 mm<sup>2</sup>·s<sup>− 1</sup>, and a relatively high compressive strength of 32.49 MPa. The current investigation underscores the promising prospects of porous CZTSC ceramics in the field of thermal insulation.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 6","pages":"2031 - 2041"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01653-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermal conductivity and mechanical properties of fluorite-type porous (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ high-entropy ceramics\",\"authors\":\"Yingying Tang, Yongfeng Xia, Dongxu Yao, Ming Zhu, Jun Zhao, Yu-Ping Zeng\",\"doi\":\"10.1007/s10934-024-01653-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal insulation materials must exhibit superior mechanical properties alongside exceptional thermal insulation conductivity. However, traditional porous ceramics often struggle to meet these dual requirements simultaneously. In high-entropy materials, the phonon scattering induced by lattice distortion effects can significantly reduce the thermal conductivity of ceramics, thus opening new avenues for the design of novel thermal insulation materials. Inspired by the high-entropy effect, this study employed solid-state reaction methods to synthesize (Ce<sub>0.2</sub>Zr<sub>0.2</sub>Ti<sub>0.2</sub>Sn<sub>0.2</sub>Ca<sub>0.2</sub>)O<sub>2−δ</sub> (CZTSC) high-entropy ceramics at various temperatures, investigating their phase constituents, microstructural characteristics, and mechanical properties, while exploring the optimal sintering temperature. Additionally, a pore-forming agent method was utilized to fabricate monophasic CZTSC porous ceramics with different porosities at 1400 °C. Specifically, when the pore-forming agent content was 20 wt%, the sample exhibited an apparent porosity of 42.82%, with a low thermal conductivity of 0.57 W·m<sup>− 1</sup>·K<sup>− 1</sup>, a low thermal diffusivity of 0.406 mm<sup>2</sup>·s<sup>− 1</sup>, and a relatively high compressive strength of 32.49 MPa. The current investigation underscores the promising prospects of porous CZTSC ceramics in the field of thermal insulation.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 6\",\"pages\":\"2031 - 2041\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10934-024-01653-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01653-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01653-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Thermal conductivity and mechanical properties of fluorite-type porous (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ high-entropy ceramics
Thermal insulation materials must exhibit superior mechanical properties alongside exceptional thermal insulation conductivity. However, traditional porous ceramics often struggle to meet these dual requirements simultaneously. In high-entropy materials, the phonon scattering induced by lattice distortion effects can significantly reduce the thermal conductivity of ceramics, thus opening new avenues for the design of novel thermal insulation materials. Inspired by the high-entropy effect, this study employed solid-state reaction methods to synthesize (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2−δ (CZTSC) high-entropy ceramics at various temperatures, investigating their phase constituents, microstructural characteristics, and mechanical properties, while exploring the optimal sintering temperature. Additionally, a pore-forming agent method was utilized to fabricate monophasic CZTSC porous ceramics with different porosities at 1400 °C. Specifically, when the pore-forming agent content was 20 wt%, the sample exhibited an apparent porosity of 42.82%, with a low thermal conductivity of 0.57 W·m− 1·K− 1, a low thermal diffusivity of 0.406 mm2·s− 1, and a relatively high compressive strength of 32.49 MPa. The current investigation underscores the promising prospects of porous CZTSC ceramics in the field of thermal insulation.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.