通过直接有机-无机共组装合成有序介孔过渡金属二钴化物

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-06 DOI:10.1002/adfm.202408426
Yujian Rao, Zhenliang Li, Tuo Zhang, Zhehan Wang, Weisheng Li, Xinran Wang, Litao Sun, Yuan Ren, Li Tao
{"title":"通过直接有机-无机共组装合成有序介孔过渡金属二钴化物","authors":"Yujian Rao, Zhenliang Li, Tuo Zhang, Zhehan Wang, Weisheng Li, Xinran Wang, Litao Sun, Yuan Ren, Li Tao","doi":"10.1002/adfm.202408426","DOIUrl":null,"url":null,"abstract":"Endowing transition metal dichalcogenides (TMDs) with mesoporous structure can greatly enhance their porosity, accessible specific surface area, and exposed active sites, leading to better performances in applications based on interfacial reactions. Current methods including hard‐template (nanocasting) method or thermal‐assisted conversion (TAC) still suffer from drawbacks such as cumbersome and environmentally unfriendly process, humidity sensitivity, or ill‐defined mesostructures. Herein, the study reports a facile synthesis of ordered mesoporous TMDs/carbon composites by direct organic–inorganic co‐assembly in dual solvent (DMF/H<jats:sub>2</jats:sub>O). The amphiphilic block copolymer polyethylene oxide‐<jats:italic>b</jats:italic>‐polystyrene (PEO‐<jats:italic>b</jats:italic>‐PS) is used as the organic template, and (NH<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>MoS<jats:sub>4</jats:sub> or (NH<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>WS<jats:sub>4</jats:sub> as the inorganic precursor. After solvent evaporation‐induced aggregation assembly and thermal treatments, it results in highly ordered mesoporous MoS<jats:sub>2</jats:sub>, WS<jats:sub>2</jats:sub>, and MoS<jats:sub>2</jats:sub>/WS<jats:sub>2</jats:sub> with highly crystalline framework, high specific surface area (44‐91 m<jats:sup>2</jats:sup> g<jats:sup>−1</jats:sup>) and large pore sizes (15–21 nm). Semiconductor gas sensors based on mesoporous TMDs exhibit extraordinary sensing performances toward NO<jats:sub>2</jats:sub> at room temperature, including high sensitivity and ultrahigh selectivity, benefiting from its abundant adsorption sites for gas molecules, fast diffusion rate in well‐connected mesopores, and rich edge active sites. This work paves a facile way to develop novel ordered mesoporous TMDs‐based semiconductor materials for various applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Ordered Mesoporous Transition Metal Dichalcogenides by Direct Organic–Inorganic Co‐Assembly\",\"authors\":\"Yujian Rao, Zhenliang Li, Tuo Zhang, Zhehan Wang, Weisheng Li, Xinran Wang, Litao Sun, Yuan Ren, Li Tao\",\"doi\":\"10.1002/adfm.202408426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endowing transition metal dichalcogenides (TMDs) with mesoporous structure can greatly enhance their porosity, accessible specific surface area, and exposed active sites, leading to better performances in applications based on interfacial reactions. Current methods including hard‐template (nanocasting) method or thermal‐assisted conversion (TAC) still suffer from drawbacks such as cumbersome and environmentally unfriendly process, humidity sensitivity, or ill‐defined mesostructures. Herein, the study reports a facile synthesis of ordered mesoporous TMDs/carbon composites by direct organic–inorganic co‐assembly in dual solvent (DMF/H<jats:sub>2</jats:sub>O). The amphiphilic block copolymer polyethylene oxide‐<jats:italic>b</jats:italic>‐polystyrene (PEO‐<jats:italic>b</jats:italic>‐PS) is used as the organic template, and (NH<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>MoS<jats:sub>4</jats:sub> or (NH<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>WS<jats:sub>4</jats:sub> as the inorganic precursor. After solvent evaporation‐induced aggregation assembly and thermal treatments, it results in highly ordered mesoporous MoS<jats:sub>2</jats:sub>, WS<jats:sub>2</jats:sub>, and MoS<jats:sub>2</jats:sub>/WS<jats:sub>2</jats:sub> with highly crystalline framework, high specific surface area (44‐91 m<jats:sup>2</jats:sup> g<jats:sup>−1</jats:sup>) and large pore sizes (15–21 nm). Semiconductor gas sensors based on mesoporous TMDs exhibit extraordinary sensing performances toward NO<jats:sub>2</jats:sub> at room temperature, including high sensitivity and ultrahigh selectivity, benefiting from its abundant adsorption sites for gas molecules, fast diffusion rate in well‐connected mesopores, and rich edge active sites. This work paves a facile way to develop novel ordered mesoporous TMDs‐based semiconductor materials for various applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202408426\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202408426","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为过渡金属二钙化物(TMDs)赋予介孔结构可大大提高其孔隙率、可获得的比表面积和暴露的活性位点,从而在基于界面反应的应用中获得更好的性能。目前的方法包括硬模板(纳米铸造)法或热辅助转换法(TAC),但这些方法仍存在一些缺点,如工艺繁琐且不环保、对湿度敏感或介孔结构不清晰等。在此,本研究报告了一种在双溶剂(DMF/H2O)中通过直接有机-无机共组装轻松合成有序介孔 TMDs/ 碳复合材料的方法。以两亲嵌段共聚物聚环氧乙烷-b-聚苯乙烯(PEO-b-PS)为有机模板,(NH4)2MoS4 或 (NH4)2WS4 为无机前驱体。经过溶剂蒸发诱导的聚集组装和热处理后,产生了高度有序的介孔 MoS2、WS2 和 MoS2/WS2,它们具有高结晶框架、高比表面积(44-91 m2 g-1)和大孔径(15-21 nm)。由于介孔 TMD 具有丰富的气体分子吸附位点、在连通性良好的介孔中的快速扩散速率以及丰富的边缘活性位点,因此基于介孔 TMD 的半导体气体传感器在室温下对二氧化氮具有非凡的传感性能,包括高灵敏度和超高选择性。这项工作为开发基于有序介孔 TMDs 的新型半导体材料的各种应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Ordered Mesoporous Transition Metal Dichalcogenides by Direct Organic–Inorganic Co‐Assembly
Endowing transition metal dichalcogenides (TMDs) with mesoporous structure can greatly enhance their porosity, accessible specific surface area, and exposed active sites, leading to better performances in applications based on interfacial reactions. Current methods including hard‐template (nanocasting) method or thermal‐assisted conversion (TAC) still suffer from drawbacks such as cumbersome and environmentally unfriendly process, humidity sensitivity, or ill‐defined mesostructures. Herein, the study reports a facile synthesis of ordered mesoporous TMDs/carbon composites by direct organic–inorganic co‐assembly in dual solvent (DMF/H2O). The amphiphilic block copolymer polyethylene oxide‐b‐polystyrene (PEO‐b‐PS) is used as the organic template, and (NH4)2MoS4 or (NH4)2WS4 as the inorganic precursor. After solvent evaporation‐induced aggregation assembly and thermal treatments, it results in highly ordered mesoporous MoS2, WS2, and MoS2/WS2 with highly crystalline framework, high specific surface area (44‐91 m2 g−1) and large pore sizes (15–21 nm). Semiconductor gas sensors based on mesoporous TMDs exhibit extraordinary sensing performances toward NO2 at room temperature, including high sensitivity and ultrahigh selectivity, benefiting from its abundant adsorption sites for gas molecules, fast diffusion rate in well‐connected mesopores, and rich edge active sites. This work paves a facile way to develop novel ordered mesoporous TMDs‐based semiconductor materials for various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Self-Recoverable Symmetric Protonic Ceramic Fuel Cell with Smart Reversible Exsolution/Dissolution Electrode An Ultrahydrating Polymer that Protects Protein Therapeutics and RNA-Lipid Nanoparticles Against Freezing, Heat and Lyophilization Stress Kinetics-Matched Electrode Design for Zn-Metal Free Zinc Ion Batteries with High Energy Density and Stabilities Harnessing the Manipulation of Single Cells to Construct Biological Structures: Tools and Applications Multiresponsive Ionic Conductive Alginate/Gelatin Organohydrogels with Tunable Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1