缺陷驱动的氧化作用使 V2CTx MXene 具有超长周期和高速率的水 K+ 存储能力

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-06 DOI:10.1002/adfm.202407497
Yujing Liu, Qi Liu, Chengyao Zhao, Liping Liu, Zhongqiu Liu, Anguo Ying, Zhibin Pang, Xuping Sun, Pu Chen, Guang Chen
{"title":"缺陷驱动的氧化作用使 V2CTx MXene 具有超长周期和高速率的水 K+ 存储能力","authors":"Yujing Liu, Qi Liu, Chengyao Zhao, Liping Liu, Zhongqiu Liu, Anguo Ying, Zhibin Pang, Xuping Sun, Pu Chen, Guang Chen","doi":"10.1002/adfm.202407497","DOIUrl":null,"url":null,"abstract":"Owing to the adverse influences of irreversible oxidation, the development of MXene‐based materials, especially those with satisfactory performance and longevity for aqueous energy storage, continues to suffer severe challenges. Herein, the strategy of targeted passivation‐supported defect‐lock‐oxygen is conceived, whereby engineered the V<jats:sub>2</jats:sub>CT<jats:sub>x</jats:sub> material for controllable partial oxidation with enhanced regioselectivity. When the material works, inside the intrinsic defects, the outward diffusion of oxidation is confined by the Lewis bases around the defects, which allows for the controllable progress of oxidation. The defect‐locked oxygen oxidizes the exposed carbon, thus forming sufficient amorphous carbons for enhancing the capacitive‐type adsorption of K‐ions. Then the oxidized defects enabled the fast kinetics via the cross‐layer transport of K‐ions. Benefiting from the strategy, the electrode assembly V<jats:sub>2</jats:sub>CT<jats:sub>x</jats:sub>‐RTIL (V<jats:sub>2</jats:sub>CT<jats:sub>x</jats:sub> equipped with room temperature ionic liquid) exhibits high capacity, good rate capability, and ultra‐longevity compared with those of the MXene materials so far reported. This work presents the first strategy of targeted passivation‐supported defect‐lock‐oxygen for high‐rate capability and super long‐cycling aqueous K<jats:sup>+</jats:sup> storage and hopefully would provide the inspiration for the future design of novel electrodes.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect‐Driven Oxidation Enabled V2CTx MXene with Ultralong‐Cycling and High‐Rate Capability in Aqueous K+ Storage\",\"authors\":\"Yujing Liu, Qi Liu, Chengyao Zhao, Liping Liu, Zhongqiu Liu, Anguo Ying, Zhibin Pang, Xuping Sun, Pu Chen, Guang Chen\",\"doi\":\"10.1002/adfm.202407497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the adverse influences of irreversible oxidation, the development of MXene‐based materials, especially those with satisfactory performance and longevity for aqueous energy storage, continues to suffer severe challenges. Herein, the strategy of targeted passivation‐supported defect‐lock‐oxygen is conceived, whereby engineered the V<jats:sub>2</jats:sub>CT<jats:sub>x</jats:sub> material for controllable partial oxidation with enhanced regioselectivity. When the material works, inside the intrinsic defects, the outward diffusion of oxidation is confined by the Lewis bases around the defects, which allows for the controllable progress of oxidation. The defect‐locked oxygen oxidizes the exposed carbon, thus forming sufficient amorphous carbons for enhancing the capacitive‐type adsorption of K‐ions. Then the oxidized defects enabled the fast kinetics via the cross‐layer transport of K‐ions. Benefiting from the strategy, the electrode assembly V<jats:sub>2</jats:sub>CT<jats:sub>x</jats:sub>‐RTIL (V<jats:sub>2</jats:sub>CT<jats:sub>x</jats:sub> equipped with room temperature ionic liquid) exhibits high capacity, good rate capability, and ultra‐longevity compared with those of the MXene materials so far reported. This work presents the first strategy of targeted passivation‐supported defect‐lock‐oxygen for high‐rate capability and super long‐cycling aqueous K<jats:sup>+</jats:sup> storage and hopefully would provide the inspiration for the future design of novel electrodes.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202407497\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202407497","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于不可逆氧化的不利影响,MXene 基材料的开发,尤其是那些性能和寿命令人满意的水性储能材料的开发,仍然面临严峻挑战。在此,我们构思了有针对性的钝化-支持缺陷-锁氧策略,从而设计出具有增强区域选择性的可控部分氧化的 V2CTx 材料。材料工作时,在固有缺陷内部,氧化的向外扩散受到缺陷周围路易斯碱的限制,从而实现了可控的氧化过程。被缺陷锁住的氧气会氧化暴露在外的碳,从而形成足够的无定形碳,以增强对 K 离子的电容式吸附。然后,氧化缺陷通过 K 离子的跨层传输实现了快速动力学。得益于这一策略,V2CTx-RTIL(配备室温离子液体的 V2CTx)电极组件与迄今报道的 MXene 材料相比,具有高容量、良好的速率能力和超长寿命。这项工作首次提出了定向钝化-支持缺陷-锁氧的策略,以实现高倍率能力和超长循环的水性 K+ 储存,希望能为未来新型电极的设计提供启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defect‐Driven Oxidation Enabled V2CTx MXene with Ultralong‐Cycling and High‐Rate Capability in Aqueous K+ Storage
Owing to the adverse influences of irreversible oxidation, the development of MXene‐based materials, especially those with satisfactory performance and longevity for aqueous energy storage, continues to suffer severe challenges. Herein, the strategy of targeted passivation‐supported defect‐lock‐oxygen is conceived, whereby engineered the V2CTx material for controllable partial oxidation with enhanced regioselectivity. When the material works, inside the intrinsic defects, the outward diffusion of oxidation is confined by the Lewis bases around the defects, which allows for the controllable progress of oxidation. The defect‐locked oxygen oxidizes the exposed carbon, thus forming sufficient amorphous carbons for enhancing the capacitive‐type adsorption of K‐ions. Then the oxidized defects enabled the fast kinetics via the cross‐layer transport of K‐ions. Benefiting from the strategy, the electrode assembly V2CTx‐RTIL (V2CTx equipped with room temperature ionic liquid) exhibits high capacity, good rate capability, and ultra‐longevity compared with those of the MXene materials so far reported. This work presents the first strategy of targeted passivation‐supported defect‐lock‐oxygen for high‐rate capability and super long‐cycling aqueous K+ storage and hopefully would provide the inspiration for the future design of novel electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Self-Recoverable Symmetric Protonic Ceramic Fuel Cell with Smart Reversible Exsolution/Dissolution Electrode An Ultrahydrating Polymer that Protects Protein Therapeutics and RNA-Lipid Nanoparticles Against Freezing, Heat and Lyophilization Stress Kinetics-Matched Electrode Design for Zn-Metal Free Zinc Ion Batteries with High Energy Density and Stabilities Harnessing the Manipulation of Single Cells to Construct Biological Structures: Tools and Applications Multiresponsive Ionic Conductive Alginate/Gelatin Organohydrogels with Tunable Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1