空位诱导的局部态磷化钴用于无粘结剂阳极,以实现稳定的高倍率钠离子电池。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-07 DOI:10.1002/smll.202403719
Heng Zhang, Junquan Cheng, Xin Xia, Lang Qiu, Feng Liu, Wei Sun, Youcun Bai, Chang Ming Li
{"title":"空位诱导的局部态磷化钴用于无粘结剂阳极,以实现稳定的高倍率钠离子电池。","authors":"Heng Zhang, Junquan Cheng, Xin Xia, Lang Qiu, Feng Liu, Wei Sun, Youcun Bai, Chang Ming Li","doi":"10.1002/smll.202403719","DOIUrl":null,"url":null,"abstract":"<p><p>Metal phosphides with easy synthesis, controllable morphology, and high capacity are considered as potential anodes for sodium-ion batteries (SIBs). However, the inherent shortcomings of metal phosphating materials, such as conductivity, kinetics, volume strain, etc are not satisfactory, which hinders their large-scale application. Here, a CoP@carbon nanofibers-composite containing rich Co─N─C heterointerface and phosphorus vacancies grown on carbon cloth (CoP<sub>1-x</sub>@MEC) is synthesized as SIB anode to accomplish extraordinary capacity and ultra-long cycle life. The hybrid composite nanoreactor effectively impregnates defective CoP as active reaction center while offering Co─N─C layer to buffer the volume expansion during charge-discharge process. These vast active interfaces, favored electrolyte infiltration, and a well-structured ion-electron transport network synergistically improve Na<sup>+</sup> storage and electrode kinetics. By virtue of these superiorities, CoP<sub>1-x</sub>@MEC binder-free anode delivers superb SIBs performance including a high areal capacity (2.47 mAh cm<sup>-2</sup>@0.2 mA cm<sup>-2</sup>), high rate capability (0.443 mAh cm<sup>-2</sup>@6 mA cm<sup>-2</sup>), and long cycling stability (300 cycles without decay), thus holding great promise for inexpensive binder-free anode-based SIBs for practical applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacancies-Induced Delocalized States Cobalt Phosphide for Binder-Free Anode Toward Stable and High-Rate Sodium-Ion Batteries.\",\"authors\":\"Heng Zhang, Junquan Cheng, Xin Xia, Lang Qiu, Feng Liu, Wei Sun, Youcun Bai, Chang Ming Li\",\"doi\":\"10.1002/smll.202403719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal phosphides with easy synthesis, controllable morphology, and high capacity are considered as potential anodes for sodium-ion batteries (SIBs). However, the inherent shortcomings of metal phosphating materials, such as conductivity, kinetics, volume strain, etc are not satisfactory, which hinders their large-scale application. Here, a CoP@carbon nanofibers-composite containing rich Co─N─C heterointerface and phosphorus vacancies grown on carbon cloth (CoP<sub>1-x</sub>@MEC) is synthesized as SIB anode to accomplish extraordinary capacity and ultra-long cycle life. The hybrid composite nanoreactor effectively impregnates defective CoP as active reaction center while offering Co─N─C layer to buffer the volume expansion during charge-discharge process. These vast active interfaces, favored electrolyte infiltration, and a well-structured ion-electron transport network synergistically improve Na<sup>+</sup> storage and electrode kinetics. By virtue of these superiorities, CoP<sub>1-x</sub>@MEC binder-free anode delivers superb SIBs performance including a high areal capacity (2.47 mAh cm<sup>-2</sup>@0.2 mA cm<sup>-2</sup>), high rate capability (0.443 mAh cm<sup>-2</sup>@6 mA cm<sup>-2</sup>), and long cycling stability (300 cycles without decay), thus holding great promise for inexpensive binder-free anode-based SIBs for practical applications.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202403719\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202403719","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属磷化物具有易于合成、形态可控和容量高等特点,被认为是钠离子电池(SIB)的潜在阳极。然而,金属磷化材料在导电性、动力学、体积应变等方面的固有缺陷并不令人满意,这阻碍了其大规模应用。本文合成了一种 CoP@carbon 纳米纤维复合材料(CoP1-x@MEC)作为 SIB 阳极,该材料含有丰富的 Co─N─C 异质面和生长在碳布上的磷空位(CoP1-x@MEC),可实现超大容量和超长循环寿命。这种混合复合纳米反应器有效地浸渍了有缺陷的 CoP 作为活性反应中心,同时提供 Co─N─C 层以缓冲充放电过程中的体积膨胀。这些广阔的活性界面、有利的电解质渗透和结构良好的离子-电子传输网络协同改善了 Na+ 的存储和电极动力学。凭借这些优势,CoP1-x@MEC 无粘结剂阳极可提供卓越的 SIB 性能,包括高面积容量(2.47 mAh cm-2@0.2 mA cm-2)、高速率能力(0.443 mAh cm-2@6 mA cm-2)和长循环稳定性(300 次循环无衰减),从而为实际应用中的廉价无粘结剂阳极 SIB 带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vacancies-Induced Delocalized States Cobalt Phosphide for Binder-Free Anode Toward Stable and High-Rate Sodium-Ion Batteries.

Metal phosphides with easy synthesis, controllable morphology, and high capacity are considered as potential anodes for sodium-ion batteries (SIBs). However, the inherent shortcomings of metal phosphating materials, such as conductivity, kinetics, volume strain, etc are not satisfactory, which hinders their large-scale application. Here, a CoP@carbon nanofibers-composite containing rich Co─N─C heterointerface and phosphorus vacancies grown on carbon cloth (CoP1-x@MEC) is synthesized as SIB anode to accomplish extraordinary capacity and ultra-long cycle life. The hybrid composite nanoreactor effectively impregnates defective CoP as active reaction center while offering Co─N─C layer to buffer the volume expansion during charge-discharge process. These vast active interfaces, favored electrolyte infiltration, and a well-structured ion-electron transport network synergistically improve Na+ storage and electrode kinetics. By virtue of these superiorities, CoP1-x@MEC binder-free anode delivers superb SIBs performance including a high areal capacity (2.47 mAh cm-2@0.2 mA cm-2), high rate capability (0.443 mAh cm-2@6 mA cm-2), and long cycling stability (300 cycles without decay), thus holding great promise for inexpensive binder-free anode-based SIBs for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. Delivery of Synthetic Interleukin-22 mRNA to Hepatocytes via Lipid Nanoparticles Alleviates Liver Injury. Hydrodynamics and Aggregation of Nanoparticles with Protein Corona: Effects of Protein Concentration and Ionic Strength. Incorporating Zinc Metal Sites in Aluminum-Coordinated Porphyrin Metal-Organic Frameworks for Enhanced Photocatalytic Nitrogen Reduction to Ammonia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1