Saskia Wutke , Stephan M. Blank , Jean-Luc Boevé , Brant C. Faircloth , Frank Koch , Catherine R. Linnen , Tobias Malm , Gengyun Niu , Marko Prous , Nathan M. Schiff , Stefan Schmidt , Andreas Taeger , Lars Vilhelmsen , Niklas Wahlberg , Meicai Wei , Tommi Nyman
{"title":"锯蝇和木蝉(膜翅目,同翅目)的系统发生组学和生物地理学。","authors":"Saskia Wutke , Stephan M. Blank , Jean-Luc Boevé , Brant C. Faircloth , Frank Koch , Catherine R. Linnen , Tobias Malm , Gengyun Niu , Marko Prous , Nathan M. Schiff , Stefan Schmidt , Andreas Taeger , Lars Vilhelmsen , Niklas Wahlberg , Meicai Wei , Tommi Nyman","doi":"10.1016/j.ympev.2024.108144","DOIUrl":null,"url":null,"abstract":"<div><p>Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic ∼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of <em>Athalia</em> and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.</p></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"199 ","pages":"Article 108144"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1055790324001362/pdfft?md5=b736e4dfeb4010b7432517a3e51d9a53&pid=1-s2.0-S1055790324001362-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phylogenomics and biogeography of sawflies and woodwasps (Hymenoptera, Symphyta)\",\"authors\":\"Saskia Wutke , Stephan M. Blank , Jean-Luc Boevé , Brant C. Faircloth , Frank Koch , Catherine R. Linnen , Tobias Malm , Gengyun Niu , Marko Prous , Nathan M. Schiff , Stefan Schmidt , Andreas Taeger , Lars Vilhelmsen , Niklas Wahlberg , Meicai Wei , Tommi Nyman\",\"doi\":\"10.1016/j.ympev.2024.108144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic ∼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of <em>Athalia</em> and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.</p></div>\",\"PeriodicalId\":56109,\"journal\":{\"name\":\"Molecular Phylogenetics and Evolution\",\"volume\":\"199 \",\"pages\":\"Article 108144\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1055790324001362/pdfft?md5=b736e4dfeb4010b7432517a3e51d9a53&pid=1-s2.0-S1055790324001362-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Phylogenetics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1055790324001362\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324001362","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Phylogenomics and biogeography of sawflies and woodwasps (Hymenoptera, Symphyta)
Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic ∼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of Athalia and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.