{"title":"AlphaFold3 向解码分子行为和生物计算迈出了一步","authors":"Rohit Roy, Hashim M. Al-Hashimi","doi":"10.1038/s41594-024-01350-2","DOIUrl":null,"url":null,"abstract":"AlphaFold 3 represents a breakthrough in predicting the 3D structures of complexes directly from their sequences, offering insights into biomolecular interactions. Extending predictions to molecular behavior and function requires a shift from viewing biomolecules as static 3D structures to dynamic conformational ensembles.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlphaFold3 takes a step toward decoding molecular behavior and biological computation\",\"authors\":\"Rohit Roy, Hashim M. Al-Hashimi\",\"doi\":\"10.1038/s41594-024-01350-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AlphaFold 3 represents a breakthrough in predicting the 3D structures of complexes directly from their sequences, offering insights into biomolecular interactions. Extending predictions to molecular behavior and function requires a shift from viewing biomolecules as static 3D structures to dynamic conformational ensembles.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01350-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01350-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
AlphaFold3 takes a step toward decoding molecular behavior and biological computation
AlphaFold 3 represents a breakthrough in predicting the 3D structures of complexes directly from their sequences, offering insights into biomolecular interactions. Extending predictions to molecular behavior and function requires a shift from viewing biomolecules as static 3D structures to dynamic conformational ensembles.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.