在瑞舒莫德诱导的慢性伤口动物模型中绿色合成金纳米粒子。

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY Journal of Drug Targeting Pub Date : 2024-07-12 DOI:10.1080/1061186X.2024.2373304
Carolini Mendes, Rubya Pereira Zaccaron, Laura de Roch Casagrande, Ligia Milanez Venturini, Camila da Costa, Igor Ramos Lima, Tiago Bender Wermuth, Sabrina Arcaro, Paulo Emilio Feuser, Paulo Cesar Lock Silveira
{"title":"在瑞舒莫德诱导的慢性伤口动物模型中绿色合成金纳米粒子。","authors":"Carolini Mendes, Rubya Pereira Zaccaron, Laura de Roch Casagrande, Ligia Milanez Venturini, Camila da Costa, Igor Ramos Lima, Tiago Bender Wermuth, Sabrina Arcaro, Paulo Emilio Feuser, Paulo Cesar Lock Silveira","doi":"10.1080/1061186X.2024.2373304","DOIUrl":null,"url":null,"abstract":"<p><p>Cost-effective strategies for the treatment of chronic wounds must be developed. The green synthesis of gold nanoparticles (GNPs) it is possible to guarantee a lower toxicity in biological tissues and greater safety of applicability, in addition to adding the effects of nanoparticles (NPs) to those of extracts. The objective of this study was to evaluate the effects of treatment with biosynthesized GNPs in a chronic wound model. Wistar rats were distributed into 7 groups: Acute Wound (AW); Chronic wound (CW); CW + GNPs-Açaí; CW + GNPs-DB; CW + AV-GNPs; CW + SafGel<sup>®</sup>; CW + 660 nm laser. The chronic injury model was induced with topically applied Resiquimod for 6 days. Treatments were then initated on the fourteenth day after the last application of Resiquimod and carried out daily for ten days. The proposed therapies with GNPs were able to significantly reduce the inflammatory score and increase the rate of wound contraction. In histology, there was a reduction in the inflammatory infiltrate and increased gene expression of fibronectin and type III collagen, mainly in the CW + AV-GNPs group. The therapies were able to reduce pro-inflammatory cytokines, increase anti-inflammatory cytokines, and reduce oxidative stress. The results demonstrated that the effects of GNPs appear to complement those of the extracts, thereby enhancing the tissue repair process.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of gold nanoparticles in an animal model of chronic wound induced with Resiquimod.\",\"authors\":\"Carolini Mendes, Rubya Pereira Zaccaron, Laura de Roch Casagrande, Ligia Milanez Venturini, Camila da Costa, Igor Ramos Lima, Tiago Bender Wermuth, Sabrina Arcaro, Paulo Emilio Feuser, Paulo Cesar Lock Silveira\",\"doi\":\"10.1080/1061186X.2024.2373304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cost-effective strategies for the treatment of chronic wounds must be developed. The green synthesis of gold nanoparticles (GNPs) it is possible to guarantee a lower toxicity in biological tissues and greater safety of applicability, in addition to adding the effects of nanoparticles (NPs) to those of extracts. The objective of this study was to evaluate the effects of treatment with biosynthesized GNPs in a chronic wound model. Wistar rats were distributed into 7 groups: Acute Wound (AW); Chronic wound (CW); CW + GNPs-Açaí; CW + GNPs-DB; CW + AV-GNPs; CW + SafGel<sup>®</sup>; CW + 660 nm laser. The chronic injury model was induced with topically applied Resiquimod for 6 days. Treatments were then initated on the fourteenth day after the last application of Resiquimod and carried out daily for ten days. The proposed therapies with GNPs were able to significantly reduce the inflammatory score and increase the rate of wound contraction. In histology, there was a reduction in the inflammatory infiltrate and increased gene expression of fibronectin and type III collagen, mainly in the CW + AV-GNPs group. The therapies were able to reduce pro-inflammatory cytokines, increase anti-inflammatory cytokines, and reduce oxidative stress. The results demonstrated that the effects of GNPs appear to complement those of the extracts, thereby enhancing the tissue repair process.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2024.2373304\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2373304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

必须开发具有成本效益的慢性伤口治疗策略。金纳米粒子(GNPs)的绿色合成除了能在提取物的基础上增加纳米粒子(NPs)的效果外,还能保证其在生物组织中的低毒性和更高的适用安全性。本研究的目的是评估在慢性伤口模型中使用生物合成 GNPs 治疗的效果。研究人员将 Wistar 大鼠分为 7 组:急性伤口 (AW);慢性伤口 (CW);CW + GNPs-阿萨伊;CW + GNPs-DB;CW + AV-GNPs;CW + SafGel®;CW + 660 纳米激光。慢性损伤模型通过局部使用 Resiquimod 诱导 6 天。然后在最后一次使用 Resiquimod 后的第 14 天开始治疗,每天治疗一次,持续 10 天。使用 GNPs 的拟议疗法能够显著降低炎症评分,提高伤口收缩率。在组织学方面,主要在 CW + AV-GNPs 组,炎症浸润减少,纤维连接蛋白和 III 型胶原的基因表达增加。这些疗法能够减少促炎细胞因子,增加抗炎细胞因子,减少氧化应激。结果表明,GNPs 的作用似乎与提取物的作用相辅相成,从而加强了组织修复过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green synthesis of gold nanoparticles in an animal model of chronic wound induced with Resiquimod.

Cost-effective strategies for the treatment of chronic wounds must be developed. The green synthesis of gold nanoparticles (GNPs) it is possible to guarantee a lower toxicity in biological tissues and greater safety of applicability, in addition to adding the effects of nanoparticles (NPs) to those of extracts. The objective of this study was to evaluate the effects of treatment with biosynthesized GNPs in a chronic wound model. Wistar rats were distributed into 7 groups: Acute Wound (AW); Chronic wound (CW); CW + GNPs-Açaí; CW + GNPs-DB; CW + AV-GNPs; CW + SafGel®; CW + 660 nm laser. The chronic injury model was induced with topically applied Resiquimod for 6 days. Treatments were then initated on the fourteenth day after the last application of Resiquimod and carried out daily for ten days. The proposed therapies with GNPs were able to significantly reduce the inflammatory score and increase the rate of wound contraction. In histology, there was a reduction in the inflammatory infiltrate and increased gene expression of fibronectin and type III collagen, mainly in the CW + AV-GNPs group. The therapies were able to reduce pro-inflammatory cytokines, increase anti-inflammatory cytokines, and reduce oxidative stress. The results demonstrated that the effects of GNPs appear to complement those of the extracts, thereby enhancing the tissue repair process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
期刊最新文献
Machine learning for skin permeability prediction: random forest and XG boost regression. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. Clinical evaluation of liposome-based gel formulation containing glycolic acid for the treatment of photodamaged skin. Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1