用于深部组织生物动态成像的高时空分辨率微波诱导热声层析成像技术

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-07-08 DOI:10.1063/5.0216061
Yu Wang, Xiaoyu Tang, Huan Qin
{"title":"用于深部组织生物动态成像的高时空分辨率微波诱导热声层析成像技术","authors":"Yu Wang, Xiaoyu Tang, Huan Qin","doi":"10.1063/5.0216061","DOIUrl":null,"url":null,"abstract":"Biological systems undergo constant dynamic changes across various spatial and temporal scales. To investigate the intricate biological dynamics in living organisms, there is a strong need for high-speed and high-resolution imaging capabilities with significant imaging depth. In this work, we present high-spatiotemporal resolution microwave-induced thermoacoustic tomography (HR-MTAT) as a method for imaging biological dynamics in deep tissues. HR-MTAT utilizes nanosecond pulsed microwave excitation and ultrasound detection, with appropriate spatial configurations, to achieve high coupling of the sample to the microwaves, to produce images in soft tissue with dielectric contrast and sub-millimeter spatial resolution (230 μm), to a depth of a few centimeters. Notably, by employing a 128-channel parallel signal acquisition and digitization strategy, the field programmable gate array module manages data synthesis, and GPU-based parallel pixel reconstruction facilitates HR-MTAT to accomplish single-frame image reconstruction in an impressive 50 μs. The practical feasibility of HR-MTAT was evaluated in live mice. The results show that HR-MTAT can noninvasively image whole-body small animals (up to 60 mm in depth) with clear resolution of internal organ structures at a frame rate of 100 Hz, without the need for labeling. At this high spatiotemporal resolution, HR-MTAT can capture respiration, heartbeat, and arterial pulse propagation without motion artifacts and track bio-nanoprobes in livers and tumors. These findings demonstrate HR-MTAT's ability to perform dynamic imaging with high contrast and resolution in deep tissues.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-spatiotemporal resolution microwave-induced thermoacoustic tomography for imaging biological dynamics in deep tissue\",\"authors\":\"Yu Wang, Xiaoyu Tang, Huan Qin\",\"doi\":\"10.1063/5.0216061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological systems undergo constant dynamic changes across various spatial and temporal scales. To investigate the intricate biological dynamics in living organisms, there is a strong need for high-speed and high-resolution imaging capabilities with significant imaging depth. In this work, we present high-spatiotemporal resolution microwave-induced thermoacoustic tomography (HR-MTAT) as a method for imaging biological dynamics in deep tissues. HR-MTAT utilizes nanosecond pulsed microwave excitation and ultrasound detection, with appropriate spatial configurations, to achieve high coupling of the sample to the microwaves, to produce images in soft tissue with dielectric contrast and sub-millimeter spatial resolution (230 μm), to a depth of a few centimeters. Notably, by employing a 128-channel parallel signal acquisition and digitization strategy, the field programmable gate array module manages data synthesis, and GPU-based parallel pixel reconstruction facilitates HR-MTAT to accomplish single-frame image reconstruction in an impressive 50 μs. The practical feasibility of HR-MTAT was evaluated in live mice. The results show that HR-MTAT can noninvasively image whole-body small animals (up to 60 mm in depth) with clear resolution of internal organ structures at a frame rate of 100 Hz, without the need for labeling. At this high spatiotemporal resolution, HR-MTAT can capture respiration, heartbeat, and arterial pulse propagation without motion artifacts and track bio-nanoprobes in livers and tumors. These findings demonstrate HR-MTAT's ability to perform dynamic imaging with high contrast and resolution in deep tissues.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0216061\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0216061","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

生物系统在不同的时空尺度上不断发生动态变化。要研究生物体内错综复杂的生物动态,亟需高速、高分辨率、成像深度大的成像能力。在这项工作中,我们提出了高时空分辨率微波诱导热声层析成像(HR-MTAT)作为深部组织生物动态成像的一种方法。HR-MTAT 利用纳秒脉冲微波激发和超声检测,通过适当的空间配置实现样品与微波的高耦合,在软组织中生成具有介电对比度和亚毫米空间分辨率(230 微米)的图像,深度可达几厘米。值得注意的是,通过采用 128 通道并行信号采集和数字化策略、现场可编程门阵列模块管理数据合成以及基于 GPU 的并行像素重建,HR-MTAT 能够在 50 μs 的惊人时间内完成单帧图像重建。在活体小鼠身上评估了 HR-MTAT 的实际可行性。结果表明,HR-MTAT 能以 100 Hz 的帧频对小型动物(深度达 60 毫米)全身进行无创成像,并能清晰分辨内部器官结构,且无需标记。在如此高的时空分辨率下,HR-MTAT 可以捕捉呼吸、心跳和动脉脉搏传播,而不会产生运动伪影,还能跟踪肝脏和肿瘤中的生物纳米探针。这些研究结果表明,HR-MTAT 能够在深部组织中以高对比度和高分辨率进行动态成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-spatiotemporal resolution microwave-induced thermoacoustic tomography for imaging biological dynamics in deep tissue
Biological systems undergo constant dynamic changes across various spatial and temporal scales. To investigate the intricate biological dynamics in living organisms, there is a strong need for high-speed and high-resolution imaging capabilities with significant imaging depth. In this work, we present high-spatiotemporal resolution microwave-induced thermoacoustic tomography (HR-MTAT) as a method for imaging biological dynamics in deep tissues. HR-MTAT utilizes nanosecond pulsed microwave excitation and ultrasound detection, with appropriate spatial configurations, to achieve high coupling of the sample to the microwaves, to produce images in soft tissue with dielectric contrast and sub-millimeter spatial resolution (230 μm), to a depth of a few centimeters. Notably, by employing a 128-channel parallel signal acquisition and digitization strategy, the field programmable gate array module manages data synthesis, and GPU-based parallel pixel reconstruction facilitates HR-MTAT to accomplish single-frame image reconstruction in an impressive 50 μs. The practical feasibility of HR-MTAT was evaluated in live mice. The results show that HR-MTAT can noninvasively image whole-body small animals (up to 60 mm in depth) with clear resolution of internal organ structures at a frame rate of 100 Hz, without the need for labeling. At this high spatiotemporal resolution, HR-MTAT can capture respiration, heartbeat, and arterial pulse propagation without motion artifacts and track bio-nanoprobes in livers and tumors. These findings demonstrate HR-MTAT's ability to perform dynamic imaging with high contrast and resolution in deep tissues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
A sulfur-infiltrated mesoporous silica/CNT composite-based functional interlayer for enhanced Li–S battery performance Quantitative analysis of atomic migration in lithium-ion conducting oxide solid electrolytes Micromagnetic simulation of the magnetization-controlled critical current in a S–(S/F)–S superconducting switch Electrical transport characteristics of atomic contact and nanogap dynamically formed by electromigration Generation of high-energy self-mode-locked pulses in a Tm-doped fiber laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1