线性系统的非线性计算

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2024-07-09 DOI:10.1038/s41567-024-02531-y
Peter L. McMahon
{"title":"线性系统的非线性计算","authors":"Peter L. McMahon","doi":"10.1038/s41567-024-02531-y","DOIUrl":null,"url":null,"abstract":"Nonlinearity is crucial for sophisticated tasks in machine learning but is often difficult to engineer outside of electronics. By encoding the inputs in parameters of the system, linear systems can realize efficiently trainable nonlinear computations.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 9","pages":"1365-1366"},"PeriodicalIF":17.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear computation with linear systems\",\"authors\":\"Peter L. McMahon\",\"doi\":\"10.1038/s41567-024-02531-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinearity is crucial for sophisticated tasks in machine learning but is often difficult to engineer outside of electronics. By encoding the inputs in parameters of the system, linear systems can realize efficiently trainable nonlinear computations.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 9\",\"pages\":\"1365-1366\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02531-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02531-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非线性对于机器学习中的复杂任务至关重要,但通常很难在电子领域之外进行工程设计。通过将输入编码为系统参数,线性系统可以实现高效的可训练非线性计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear computation with linear systems
Nonlinearity is crucial for sophisticated tasks in machine learning but is often difficult to engineer outside of electronics. By encoding the inputs in parameters of the system, linear systems can realize efficiently trainable nonlinear computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves Universal dynamics exposed by interaction quenches Nematic fluctuations shape Cooper pairs Islands identified Highly anisotropic superconducting gap near the nematic quantum critical point of FeSe1−xSx
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1