{"title":"减轻 XY 表面代码的时间脆弱性","authors":"Pei-Kai Tsai, Yue Wu, Shruti Puri","doi":"10.1103/physrevx.14.031003","DOIUrl":null,"url":null,"abstract":"An important outstanding challenge that must be overcome in order to fully utilize the XY surface code for correcting biased Pauli noise is the phenomenon of fragile temporal boundaries that arises during the standard logical state-preparation and measurement protocols. To address this challenge we propose a new logical state-preparation protocol based on locally entangling qubits into small Greenberger-Horne-Zeilinger-like states prior to making the stabilizer measurements that place them in the XY-code state. We prove that in this new procedure <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mo stretchy=\"false\">(</mo><msqrt><mi>n</mi></msqrt><mo stretchy=\"false\">)</mo></math> high-rate errors along a single lattice boundary can cause a logical failure, leading to an almost quadratic reduction in the number of fault configurations compared to the standard state-preparation approach. Moreover, the code becomes equivalent to a repetition code for high-rate errors, guaranteeing a 50% code-capacity threshold during state preparation for infinitely biased noise. With a simple matching decoder we confirm that our preparation protocol outperforms the standard protocol in terms of both threshold and logical error rate in the fault-tolerant regime where measurements are unreliable and at experimentally realistic biases. We also discuss how our state-preparation protocol can be inverted for similar fragile-boundary-mitigated logical-state measurement.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Temporal Fragility in the XY Surface Code\",\"authors\":\"Pei-Kai Tsai, Yue Wu, Shruti Puri\",\"doi\":\"10.1103/physrevx.14.031003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important outstanding challenge that must be overcome in order to fully utilize the XY surface code for correcting biased Pauli noise is the phenomenon of fragile temporal boundaries that arises during the standard logical state-preparation and measurement protocols. To address this challenge we propose a new logical state-preparation protocol based on locally entangling qubits into small Greenberger-Horne-Zeilinger-like states prior to making the stabilizer measurements that place them in the XY-code state. We prove that in this new procedure <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><msqrt><mi>n</mi></msqrt><mo stretchy=\\\"false\\\">)</mo></math> high-rate errors along a single lattice boundary can cause a logical failure, leading to an almost quadratic reduction in the number of fault configurations compared to the standard state-preparation approach. Moreover, the code becomes equivalent to a repetition code for high-rate errors, guaranteeing a 50% code-capacity threshold during state preparation for infinitely biased noise. With a simple matching decoder we confirm that our preparation protocol outperforms the standard protocol in terms of both threshold and logical error rate in the fault-tolerant regime where measurements are unreliable and at experimentally realistic biases. We also discuss how our state-preparation protocol can be inverted for similar fragile-boundary-mitigated logical-state measurement.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.031003\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Mitigating Temporal Fragility in the XY Surface Code
An important outstanding challenge that must be overcome in order to fully utilize the XY surface code for correcting biased Pauli noise is the phenomenon of fragile temporal boundaries that arises during the standard logical state-preparation and measurement protocols. To address this challenge we propose a new logical state-preparation protocol based on locally entangling qubits into small Greenberger-Horne-Zeilinger-like states prior to making the stabilizer measurements that place them in the XY-code state. We prove that in this new procedure high-rate errors along a single lattice boundary can cause a logical failure, leading to an almost quadratic reduction in the number of fault configurations compared to the standard state-preparation approach. Moreover, the code becomes equivalent to a repetition code for high-rate errors, guaranteeing a 50% code-capacity threshold during state preparation for infinitely biased noise. With a simple matching decoder we confirm that our preparation protocol outperforms the standard protocol in terms of both threshold and logical error rate in the fault-tolerant regime where measurements are unreliable and at experimentally realistic biases. We also discuss how our state-preparation protocol can be inverted for similar fragile-boundary-mitigated logical-state measurement.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.