具有 10-12 稳定度的亚千赫线宽自由运行单片腔 VECSEL

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-07-08 DOI:10.1063/5.0208564
P. H. Moriya, M. Lee, J. E. Hastie
{"title":"具有 10-12 稳定度的亚千赫线宽自由运行单片腔 VECSEL","authors":"P. H. Moriya, M. Lee, J. E. Hastie","doi":"10.1063/5.0208564","DOIUrl":null,"url":null,"abstract":"We report the development of a compact, highly stable, monolithic-cavity, GaInP/AlGaInP-based vertical-external-cavity surface-emitting laser (VECSEL) with electronically tunable emission wavelength centered at 689.4425 nm for neutral strontium (Sr)-based applications. The output power reaches 40 mW (pump-power-limited) with ultra-low frequency and intensity noise performance resulting in a free-running linewidth of 720 Hz, reduced to 390 Hz when frequency locked to a reference cavity and verified via a heterodyne beat note measurement with 2 s averaging time. For shorter averaging times (0.1 ms), the free-running linewidth is as low as 40 Hz. We estimate a Lorentzian, or intrinsic, linewidth of 64 mHz from the frequency noise power spectral density at high frequencies, thus providing further evidence of the ultra-narrow fundamental linewidth of VECSELs. High frequency stability was measured via Allan deviation resulting in 1.05 × 10−12 at 2 s and 2.11 × 10−13 at 7 s averaging times when the 689 nm monolithic cavity VECSEL is free-running and locked, respectively, suitable for neutral Sr-based quantum technologies, such as optical clocks and atom interferometry.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-kilohertz linewidth free-running monolithic cavity VECSEL with 10−12 stability\",\"authors\":\"P. H. Moriya, M. Lee, J. E. Hastie\",\"doi\":\"10.1063/5.0208564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the development of a compact, highly stable, monolithic-cavity, GaInP/AlGaInP-based vertical-external-cavity surface-emitting laser (VECSEL) with electronically tunable emission wavelength centered at 689.4425 nm for neutral strontium (Sr)-based applications. The output power reaches 40 mW (pump-power-limited) with ultra-low frequency and intensity noise performance resulting in a free-running linewidth of 720 Hz, reduced to 390 Hz when frequency locked to a reference cavity and verified via a heterodyne beat note measurement with 2 s averaging time. For shorter averaging times (0.1 ms), the free-running linewidth is as low as 40 Hz. We estimate a Lorentzian, or intrinsic, linewidth of 64 mHz from the frequency noise power spectral density at high frequencies, thus providing further evidence of the ultra-narrow fundamental linewidth of VECSELs. High frequency stability was measured via Allan deviation resulting in 1.05 × 10−12 at 2 s and 2.11 × 10−13 at 7 s averaging times when the 689 nm monolithic cavity VECSEL is free-running and locked, respectively, suitable for neutral Sr-based quantum technologies, such as optical clocks and atom interferometry.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0208564\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0208564","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了基于 GaInP/AlGaInP 的垂直外腔表面发射激光器 (VECSEL),其发射波长以 689.4425 nm 为中心,可进行电子调谐,适用于基于中性锶 (Sr) 的应用。输出功率达到 40 mW(泵浦功率限制),具有超低频率和强度噪声性能,自由运行线宽为 720 Hz,当频率锁定到参考腔时,线宽降低到 390 Hz,并通过平均时间为 2 秒的外差拍音测量得到验证。在平均时间较短(0.1 毫秒)的情况下,自由运行线宽可低至 40 赫兹。我们根据高频率的频率噪声功率谱密度估算出洛伦兹线宽(或称本征线宽)为 64 mHz,从而进一步证明了 VECSEL 的超窄基本线宽。通过阿伦偏差测量了高频稳定性,结果表明,当 689 nm 单片腔 VECSEL 自由运行和锁定时,2 s 的平均时间分别为 1.05 × 10-12 和 7 s 的平均时间为 2.11 × 10-13,适用于基于锶的中性量子技术,如光学时钟和原子干涉测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub-kilohertz linewidth free-running monolithic cavity VECSEL with 10−12 stability
We report the development of a compact, highly stable, monolithic-cavity, GaInP/AlGaInP-based vertical-external-cavity surface-emitting laser (VECSEL) with electronically tunable emission wavelength centered at 689.4425 nm for neutral strontium (Sr)-based applications. The output power reaches 40 mW (pump-power-limited) with ultra-low frequency and intensity noise performance resulting in a free-running linewidth of 720 Hz, reduced to 390 Hz when frequency locked to a reference cavity and verified via a heterodyne beat note measurement with 2 s averaging time. For shorter averaging times (0.1 ms), the free-running linewidth is as low as 40 Hz. We estimate a Lorentzian, or intrinsic, linewidth of 64 mHz from the frequency noise power spectral density at high frequencies, thus providing further evidence of the ultra-narrow fundamental linewidth of VECSELs. High frequency stability was measured via Allan deviation resulting in 1.05 × 10−12 at 2 s and 2.11 × 10−13 at 7 s averaging times when the 689 nm monolithic cavity VECSEL is free-running and locked, respectively, suitable for neutral Sr-based quantum technologies, such as optical clocks and atom interferometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
A sulfur-infiltrated mesoporous silica/CNT composite-based functional interlayer for enhanced Li–S battery performance Quantitative analysis of atomic migration in lithium-ion conducting oxide solid electrolytes Micromagnetic simulation of the magnetization-controlled critical current in a S–(S/F)–S superconducting switch Electrical transport characteristics of atomic contact and nanogap dynamically formed by electromigration Generation of high-energy self-mode-locked pulses in a Tm-doped fiber laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1