掺杂锰是改善 BaBi4Ti4O15 薄膜储能性能的一种简单策略

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-07-08 DOI:10.1063/5.0217696
C. Z. Gong, B. B. Yang, M. Liu, R. R. Zhang, H. Y. Tong, R. H. Wei, L. Hu, X. B. Zhu, Y. P. Sun
{"title":"掺杂锰是改善 BaBi4Ti4O15 薄膜储能性能的一种简单策略","authors":"C. Z. Gong, B. B. Yang, M. Liu, R. R. Zhang, H. Y. Tong, R. H. Wei, L. Hu, X. B. Zhu, Y. P. Sun","doi":"10.1063/5.0217696","DOIUrl":null,"url":null,"abstract":"To obtain high energy storage density in ferroelectric films, polarization and breakdown field Eb are two crucial factors. The inversely coupled relationship between polarization and Eb is commonly observed and it remains a challenge to realize high Eb without deteriorating polarization. Selecting a suitable element doping should largely enhance the Eb since of the optimization of microstructures as well as the decrease in defects, meanwhile the doping should induce extra polarization contribution from lattice distortion. In this work, we reported that Eb can be largely enhanced via Mn doping in BaBi4Ti4O15 thin films due to grain refining, densification, and oxygen vacancy reduction. Interestingly, the polarization is not deteriorated since of the Mn doping effect induced extra polarization from the lattice distortion. Consequently, an ultrahigh energy storage density of 96 J/cm3 with a high efficiency of 76.6% was achieved in BaBi4Ti3.95Mn0.05O15 thin films with excellent stability and reliability. This work will provide a simple and effective route to improve the energy storage in dielectric capacitors.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mn doping as a simple strategy for improving energy storage in BaBi4Ti4O15 thin films\",\"authors\":\"C. Z. Gong, B. B. Yang, M. Liu, R. R. Zhang, H. Y. Tong, R. H. Wei, L. Hu, X. B. Zhu, Y. P. Sun\",\"doi\":\"10.1063/5.0217696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To obtain high energy storage density in ferroelectric films, polarization and breakdown field Eb are two crucial factors. The inversely coupled relationship between polarization and Eb is commonly observed and it remains a challenge to realize high Eb without deteriorating polarization. Selecting a suitable element doping should largely enhance the Eb since of the optimization of microstructures as well as the decrease in defects, meanwhile the doping should induce extra polarization contribution from lattice distortion. In this work, we reported that Eb can be largely enhanced via Mn doping in BaBi4Ti4O15 thin films due to grain refining, densification, and oxygen vacancy reduction. Interestingly, the polarization is not deteriorated since of the Mn doping effect induced extra polarization from the lattice distortion. Consequently, an ultrahigh energy storage density of 96 J/cm3 with a high efficiency of 76.6% was achieved in BaBi4Ti3.95Mn0.05O15 thin films with excellent stability and reliability. This work will provide a simple and effective route to improve the energy storage in dielectric capacitors.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0217696\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0217696","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

要在铁电薄膜中获得高能量储存密度,极化和击穿场 Eb 是两个关键因素。极化和 Eb 之间通常存在反向耦合关系,如何在不恶化极化的情况下实现高 Eb 仍然是一个挑战。由于微结构的优化和缺陷的减少,选择合适的元素掺杂应在很大程度上提高 Eb,同时,掺杂应引起晶格畸变产生额外的极化贡献。在这项研究中,我们发现在 BaBi4Ti4O15 薄膜中掺入锰后,由于晶粒细化、致密化和氧空位减少,Eb 很大程度上得到了增强。有趣的是,由于锰掺杂效应诱发了晶格畸变产生的额外极化,因此极化并未恶化。因此,BaBi4Ti3.95Mn0.05O15 薄膜实现了 96 J/cm3 的超高能量存储密度和 76.6% 的高效率,并具有极佳的稳定性和可靠性。这项工作将为提高电介质电容器的储能能力提供一条简单而有效的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mn doping as a simple strategy for improving energy storage in BaBi4Ti4O15 thin films
To obtain high energy storage density in ferroelectric films, polarization and breakdown field Eb are two crucial factors. The inversely coupled relationship between polarization and Eb is commonly observed and it remains a challenge to realize high Eb without deteriorating polarization. Selecting a suitable element doping should largely enhance the Eb since of the optimization of microstructures as well as the decrease in defects, meanwhile the doping should induce extra polarization contribution from lattice distortion. In this work, we reported that Eb can be largely enhanced via Mn doping in BaBi4Ti4O15 thin films due to grain refining, densification, and oxygen vacancy reduction. Interestingly, the polarization is not deteriorated since of the Mn doping effect induced extra polarization from the lattice distortion. Consequently, an ultrahigh energy storage density of 96 J/cm3 with a high efficiency of 76.6% was achieved in BaBi4Ti3.95Mn0.05O15 thin films with excellent stability and reliability. This work will provide a simple and effective route to improve the energy storage in dielectric capacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
A sulfur-infiltrated mesoporous silica/CNT composite-based functional interlayer for enhanced Li–S battery performance Quantitative analysis of atomic migration in lithium-ion conducting oxide solid electrolytes Micromagnetic simulation of the magnetization-controlled critical current in a S–(S/F)–S superconducting switch Electrical transport characteristics of atomic contact and nanogap dynamically formed by electromigration Generation of high-energy self-mode-locked pulses in a Tm-doped fiber laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1