十二氢-N-乙基咔唑在钯(111)和镍(111)表面完全脱氢的比较研究:机理与催化增强。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-07-24 Epub Date: 2024-07-10 DOI:10.1021/acsami.4c05746
Zichang Zhang, Tongyu Liu, Xi Zhang, Chenjun Zhang, Xu Jin, Jie Zheng, Qiang Sun
{"title":"十二氢-N-乙基咔唑在钯(111)和镍(111)表面完全脱氢的比较研究:机理与催化增强。","authors":"Zichang Zhang, Tongyu Liu, Xi Zhang, Chenjun Zhang, Xu Jin, Jie Zheng, Qiang Sun","doi":"10.1021/acsami.4c05746","DOIUrl":null,"url":null,"abstract":"<p><p>Dodecahydro-<i>N</i>-ethylcarbazole (12H-NEC) is regarded as the most promising liquid organic hydrogen carrier for hydrogen storage and transportation. Understanding the mechanism of 12H-NEC dehydrogenation and developing cost-effective catalysts are significant. Pd is a high-performance catalyst for 12H-NEC but is not cost-effective, and Ni is just the opposite. How to understand the whole process of full dehydrogenation and improve the performance of Ni become two key questions. Herein, we systematically investigated the mechanism of the full dehydrogenation of 12H-NEC on Pd(111) and Ni(111) for the first time. By calculating all the barriers in the whole dehydrogenation process, we identified that 3H-NEC to 2H-NEC is the rate-determining step and Ni is catalytically less effective than Pd, which is attributed to its narrower d-band distribution and a 0.32 eV higher d-band center than that of Pd. To improve the performance of Ni, we further introduced dopants of Au, Ag, Cu, Pd, Pt, Ru, Rh, Zn, and Al. We found that Ag doping brings a downshift of the d-band center from -1.29 to -1.67 eV and reduces the barrier of 4H-NEC to NEC from 0.94 to 0.76 eV. This study provides new insights into the catalytic mechanism and performance-tuning strategy to help future experimental synthesis.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Studies on Full Dehydrogenation of Dodecahydro-<i>N</i>-Ethylcarbazole on Pd(111) and Ni(111) Surfaces: Mechanism and Catalytic Enhancement.\",\"authors\":\"Zichang Zhang, Tongyu Liu, Xi Zhang, Chenjun Zhang, Xu Jin, Jie Zheng, Qiang Sun\",\"doi\":\"10.1021/acsami.4c05746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dodecahydro-<i>N</i>-ethylcarbazole (12H-NEC) is regarded as the most promising liquid organic hydrogen carrier for hydrogen storage and transportation. Understanding the mechanism of 12H-NEC dehydrogenation and developing cost-effective catalysts are significant. Pd is a high-performance catalyst for 12H-NEC but is not cost-effective, and Ni is just the opposite. How to understand the whole process of full dehydrogenation and improve the performance of Ni become two key questions. Herein, we systematically investigated the mechanism of the full dehydrogenation of 12H-NEC on Pd(111) and Ni(111) for the first time. By calculating all the barriers in the whole dehydrogenation process, we identified that 3H-NEC to 2H-NEC is the rate-determining step and Ni is catalytically less effective than Pd, which is attributed to its narrower d-band distribution and a 0.32 eV higher d-band center than that of Pd. To improve the performance of Ni, we further introduced dopants of Au, Ag, Cu, Pd, Pt, Ru, Rh, Zn, and Al. We found that Ag doping brings a downshift of the d-band center from -1.29 to -1.67 eV and reduces the barrier of 4H-NEC to NEC from 0.94 to 0.76 eV. This study provides new insights into the catalytic mechanism and performance-tuning strategy to help future experimental synthesis.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c05746\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c05746","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

十二氢-N-乙基咔唑(12H-NEC)被认为是最有希望用于氢储存和运输的液态有机氢载体。了解 12H-NEC 的脱氢机理和开发具有成本效益的催化剂意义重大。Pd 是 12H-NEC 的高性能催化剂,但成本效益不高,而 Ni 则恰恰相反。如何理解全脱氢的全过程和提高 Ni 的性能成为两个关键问题。在此,我们首次系统地研究了 12H-NEC 在 Pd(111) 和 Ni(111) 上完全脱氢的机理。通过计算整个脱氢过程中的所有势垒,我们发现 3H-NEC 到 2H-NEC 是决定速率的一步,而镍的催化效率低于钯,这是因为镍的 d 带分布较窄,d 带中心比钯高 0.32 eV。为了提高 Ni 的性能,我们进一步引入了 Au、Ag、Cu、Pd、Pt、Ru、Rh、Zn 和 Al 等掺杂剂。我们发现,掺杂 Ag 使 d 带中心从-1.29 eV 下移到-1.67 eV,并将 4H-NEC 到 NEC 的势垒从 0.94 eV 降低到 0.76 eV。这项研究为催化机理和性能调整策略提供了新的见解,有助于未来的实验合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Studies on Full Dehydrogenation of Dodecahydro-N-Ethylcarbazole on Pd(111) and Ni(111) Surfaces: Mechanism and Catalytic Enhancement.

Dodecahydro-N-ethylcarbazole (12H-NEC) is regarded as the most promising liquid organic hydrogen carrier for hydrogen storage and transportation. Understanding the mechanism of 12H-NEC dehydrogenation and developing cost-effective catalysts are significant. Pd is a high-performance catalyst for 12H-NEC but is not cost-effective, and Ni is just the opposite. How to understand the whole process of full dehydrogenation and improve the performance of Ni become two key questions. Herein, we systematically investigated the mechanism of the full dehydrogenation of 12H-NEC on Pd(111) and Ni(111) for the first time. By calculating all the barriers in the whole dehydrogenation process, we identified that 3H-NEC to 2H-NEC is the rate-determining step and Ni is catalytically less effective than Pd, which is attributed to its narrower d-band distribution and a 0.32 eV higher d-band center than that of Pd. To improve the performance of Ni, we further introduced dopants of Au, Ag, Cu, Pd, Pt, Ru, Rh, Zn, and Al. We found that Ag doping brings a downshift of the d-band center from -1.29 to -1.67 eV and reduces the barrier of 4H-NEC to NEC from 0.94 to 0.76 eV. This study provides new insights into the catalytic mechanism and performance-tuning strategy to help future experimental synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Role of Surface Tension on Heat Feedback and Power from Energetic Composites. Study on Deformation Behavior of Glass in High-temperature Molding for Massive Unit Microlens Arrays. Triterpene-Based Prodrug for Self-Boosted Drug Release and Targeted Oral Squamous Cell Carcinoma Chemotherapy. Ferroelectric Al0.85Sc0.15N and Hf0.5Zr0.5O2 Domain Switching Dynamics. Flexible Arc-Shaped Micro-Fiber Bragg Grating Array Three-Dimensional Tactile Sensor for Fingertip Signals Detection and Human Pulse Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1