{"title":"揭示迭代 MINFLUX 的精度极限。","authors":"Carlas Smith, Dylan Kalisvaart, Kirti Prakash","doi":"10.1111/jmi.13338","DOIUrl":null,"url":null,"abstract":"<p>In single-molecule microscopy, a big question is how precisely we can estimate the location of a single molecule. Our research shows that by using iterative localisation microscopy and factoring in the prior information, we can boost precision and reduce the number of photons needed. Leveraging the Van Trees inequality aids in determining the optimal precision achievable. Our approach holds promise for wider application in discerning the optimal precision across diverse imaging scenarios, encompassing various illumination strategies, point spread functions and overarching control methodologies.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"296 2","pages":"129-132"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13338","citationCount":"0","resultStr":"{\"title\":\"Unveiling the limits of precision in iterative MINFLUX\",\"authors\":\"Carlas Smith, Dylan Kalisvaart, Kirti Prakash\",\"doi\":\"10.1111/jmi.13338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In single-molecule microscopy, a big question is how precisely we can estimate the location of a single molecule. Our research shows that by using iterative localisation microscopy and factoring in the prior information, we can boost precision and reduce the number of photons needed. Leveraging the Van Trees inequality aids in determining the optimal precision achievable. Our approach holds promise for wider application in discerning the optimal precision across diverse imaging scenarios, encompassing various illumination strategies, point spread functions and overarching control methodologies.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\"296 2\",\"pages\":\"129-132\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13338\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13338\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13338","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Unveiling the limits of precision in iterative MINFLUX
In single-molecule microscopy, a big question is how precisely we can estimate the location of a single molecule. Our research shows that by using iterative localisation microscopy and factoring in the prior information, we can boost precision and reduce the number of photons needed. Leveraging the Van Trees inequality aids in determining the optimal precision achievable. Our approach holds promise for wider application in discerning the optimal precision across diverse imaging scenarios, encompassing various illumination strategies, point spread functions and overarching control methodologies.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.